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Abstract

Proteins do not carry out their functions alone. Instead, they often act by participating in macromolecular complexes and
play different functional roles depending on the other members of the complex. It is therefore interesting to identify co-
complex relationships. Although protein complexes can be identified in a high-throughput manner by experimental
technologies such as affinity purification coupled with mass spectrometry (APMS), these large-scale datasets often suffer
from high false positive and false negative rates. Here, we present a computational method that predicts co-complexed
protein pair (CCPP) relationships using kernel methods from heterogeneous data sources. We show that a diffusion kernel
based on random walks on the full network topology yields good performance in predicting CCPPs from protein interaction
networks. In the setting of direct ranking, a diffusion kernel performs much better than the mutual clustering coefficient. In
the setting of SVM classifiers, a diffusion kernel performs much better than a linear kernel. We also show that combination
of complementary information improves the performance of our CCPP recognizer. A summation of three diffusion kernels
based on two-hybrid, APMS, and genetic interaction networks and three sequence kernels achieves better performance
than the sequence kernels or diffusion kernels alone. Inclusion of additional features achieves a still better ROC50 of 0.937.
Assuming a negative-to-positive ratio of 600:1, the final classifier achieves 89.3% coverage at an estimated false discovery
rate of 10%. Finally, we applied our prediction method to two recently described APMS datasets. We find that our predicted
positives are highly enriched with CCPPs that are identified by both datasets, suggesting that our method successfully
identifies true CCPPs. An SVM classifier trained from heterogeneous data sources provides accurate predictions of CCPPs in
yeast. This computational method thereby provides an inexpensive method for identifying protein complexes that extends
and complements high-throughput experimental data.
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Introduction

Proteins carry out most of the work in the cell, and they

frequently do so by interacting with other proteins. Therefore,

understanding protein and hence cellular function often entails

knowing about various types of protein-protein interactions. This

paper describes a method for predicting these interactions using a

supervised classification algorithm that learns from a variety of

genome-wide data sets.

Three classes of methods for predicting protein-protein

interactions are described in the scientific literature. The first

class consists of docking methods that employ detailed molecular

simulations to dock two protein structures. These methods do not

scale to the entire genome, both because they require protein

structures and because they are computationally expensive. High-

throughput computational methods fall into two classes: those that

predict direct physical interactions [1–9], and those that predict

both direct and indirect interactions (i.e., co-membership in a

protein complex) [10–13]. The current work focuses on the latter

problem: predicting co-complexed protein pairs (CCPPs).

We frame the problem as a supervised learning problem, and

we train a support vector machine (SVM) classifier to discriminate

between pairs of proteins that are co-complexed and pairs that are

not. The SVM is a non-parametric statistical method for

discriminating between two classes of data. SVMs have been

applied widely in bioinformatics, in applications as diverse as

protein homology detection, alternative splicing prediction,

microarray analysis and mass spectrometry analysis [14]. Most

relevantly, they have been used successfully to recognize physically

interacting pairs of proteins [3,5,9]. The SVM operates by

projecting the data into a vector space and finding a line (or, more

generally, a hyperplane) that separates the classes in that space.

SVMs are motivated by statistical learning theory, which suggests

an optimal method for identifying this separating hyperplane.

Furthermore, SVMs are part of a class of methods, known as kernel

methods, that make use of a specific notion of pairwise similarity

(kernel functions) to project data into a high-dimensional vector

space. The benefits of the kernel approach are three-fold: the

kernel function can incorporate prior knowledge of the problem

domain; the kernel function can operate on non-vector data such

as strings, sets or graphs, and kernel algebra allows us to combine

heterogeneous types of data within a single classification

framework. The SVM algorithm and its application to biological

data is described in an accessible fashion in [15]; a much more

detailed description of SVM applications in computational biology

is available in [16].
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The ability to learn from heterogeneous data is of particular

value in the prediction of CCPPs, because so many types of data

are relevant to this task. In this work, we define separate kernels

that operate on each relevant data type. These include three

kernels on protein sequences, three kernels on different types of

protein networks derived from high-throughput data, and kernels on

gene expression, interologs, Gene Ontology terms, co-regulation and

localization data. We combine all of these kernels in a single classifier

that achieves state-of-the-art predictive accuracy.

In this work, we demonstrate the utility of a particular type of

kernel, the diffusion kernel [17], for predicting CCPPs. The diffusion

kernel can be naturally applied to protein interaction networks.

Various types of networks, representing protein physical interac-

tions, complexes and genetic interactions, can be identified by

large-scale experiments: yeast two-hybrid assays for physical

interaction detection [18,19], affinity purification coupled with

mass spectrometry (APMS) for complex detection [20,21,22], and

large-scale mapping of genetic interactions [23].

The resulting protein interaction networks have been shown to

exhibit several distinctive properties [11,23]. First, the degrees of

vertices exhibit a power-law distribution, with many vertices

having a small number of connections, and few vertices having a

large number of connections. Second, the networks belong to the

class of small world networks and contain densely connected local

neighborhoods.

These network properties can be exploited to improve statistical

inferences about protein-protein interactions. Tong et al. [23]

showed that, although there is small overlap between genetically

interacting protein pairs and CCPPs, proteins sharing a large

number of neighbors in the genetic interaction network tend to be

members of the same complex. Goldberg and Roth [11] used a

mutual clustering coefficient (MCC) to describe the cohesiveness in

the physical interaction network. They showed that vertices with a

high MCC are more likely to share an edge and that ranking by

MCC improves the accuracy of edge inference.

MCC considers the number of common neighbors shared by two

vertices, i.e., it only considers paths of length two. In this study, we

generalize upon MCC by using the diffusion kernel, which takes into

account paths of all lengths [17]. The diffusion kernel quantifies the

distance between two nodes as the weighted sum of all paths

connecting them, assigning larger weights to shorter paths. Our

experiments show that the diffusion kernel performs much better

than MCC in ranking protein pairs. In addition, we show that using

a diffusion kernel in the context of an SVM classifier improves upon

direct ranking by the diffusion kernel alone, and that a diffusion

kernel performs much better than a linear kernel, which also only

considers paths of length 2 in a network.

Next, we show that integration of different data sources

improves the performance of our classifier. The summation of

sequence and diffusion kernels yields much better performance

than either sequence or diffusion kernel alone. This classifier

successfully identifies 4789 out of 10980 positives before producing

the first false positive. The addition of features such as co-

expression, co-regulation, interolog, co-localization and GO

annotation improve the ROC50 score from 0.859 to 0.937.

We also validate our method using two recently decribed large

scale APMS data sets [21,22]. When these data sets are not used

for training, our predicted positives are significantly enriched with

protein pairs that occur in both data sets.

After validating our method, we trained two SVM classifiers,

one using all available data, and one that excludes GO

annotations, and applied both classifiers to all pairs of yeast

proteins. The resulting predictions are available through the Yeast

Resource Center (http://www.yeastrc.org/pdr) [24].

Methods

Gold Standard Protein Pairs
We derive the labels for our classification task from the MIPS

complex catalogue version 18052006 [25] excluding category 550:

complexes by systematic analysis. The rest of the MIPS complex

catalogue contains manually curated complexes derived from the

scientific literature. This manually curated database is believed to be

highly accurate and has been used to define gold standard CCPPs in

several studies [5,10,12,26]. The MIPS complex catalogue organizes

complexes into a hierarchy, with each lower level sub-complex

contained within the corresponding upper level complex. Our

CCPPs come from the lowest level and are hence the most specific

complexes in the MIPS complex catalogue. The set consists of 217

complexes, containing 1190 proteins and 10,980 CCPPs.

We select negative examples (non-CCPPs) at random from

among all protein pairs that do not co-occur in any top level MIPS

complex [9,12,26]. The resulting set of negatives may be

contaminated with some positive CCPPs; however, given the ratio

of co-complexed versus non-co-complexed pairs in the yeast

genome, the level of contamination is likely to be low. Several

studies [10,27] have attempted to remove these false negative

CCPPs from the gold standard by requiring that non-CCPPs

localize to different cellular compartments. However, Ben-hur and

Noble [28] have shown that this strategy constrains the

distribution of negative examples in such a way that the

classification task becomes significantly easier. We use a data set

with the number of negative examples the same as positive

examples to compare the performance of various methods, and use

a larger data set with a negative-to-positive ratio of 10 to estimate

the false discovery rate.

The complete collection of labeled examples, as well as all of the

kernels described in the next section, are available at the on-line

supplement http://noble.gs.washington.edu/proj/coco.

Kernel Methods
A kernel method is an algorithm that can be written such that

all occurrences of data vectors appear within a scalar product

Author Summary

Many proteins perform their jobs as part of multi-protein
units called complexes, and several technologies exist to
identify these complexes and their components with
varying precision and throughput. In this work, we
describe and apply a computational framework for
combining a variety of experimental data to identify pairs
of yeast proteins that partipicate in a complex—so-called
co-complexed protein pairs (CCPPs). The method uses
machine learning to generalize from well-characterized
CCPPs, making predictions of novel CCPPs on the basis of
sequence similarity, tandem affinity mass spectrometry
data, yeast two-hybrid data, genetic interactions, micro-
array expression data, ChIP-chip assays, and colocalization
by fluorescence microscopy. The resulting model accu-
rately summarizes this heterogeneous body of data: in a
cross-validated test, the model achieves an estimated
coverage of 89% at a false discovery rate of 10%. The final
collection of predicted CCPPs is available as a public
resource. These predictions, as well as the general
methodology described here, provide a valuable summary
of diverse yeast interaction data and generate quantitative,
testable hypotheses about novel CCPPs.

Predicting Co-Complexed Protein Pairs
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operation. When this is the case, the scalar product operation

,Xi,Xj. can be replaced with a generalized similarity function

K(Xi,Xj), known as the kernel function. If the kernel function is

positive semidefinite and symmetric, then there provably exists

some vector space (the feature space) in which the kernel function

plays the role of the scalar product. In other words, if W defines a

mapping from the space that the data resides in (the data space) into

the feature space, then W(Xi)6W(Xj) = K(Xi,Xj). The kernel function

provides an intuitive way to encode prior knowledge about a data

set. Furthermore, kernel methods provide a natural way of

combining heterogeneous data sources [29,30], because the sum of

two kernels is itself a kernel and is equivalent to concatenating the

vector representations of each data point in the two corresponding

feature spaces. This capability is particularly valuable in the

context of predicting CCPPs, because so many types of data are

relevant.

Predicting edges in a protein interaction or co-complex network

presents an additional difficulty for which kernels can provide a

solution. Many relevant types of data—protein sequence, gene

expression, etc.—concern individual proteins, whereas the predic-

tor evaluates protein pairs. This begs the question, how do we

define a similarity between two pairs of proteins, given a similarity

function that is defined on single pairs. Several groups have used

SVMs to predict protein-protein interactions [5,9] and have used a

tensor product transformation to derive a kernel on protein pairs

from a kernel on individual proteins. Given a kernel K that

measures the similarity between two proteins, the corresponding

tensor product pair kernel (TPPK) Kp is defined as Kp

((A,B),(C,D)) = K(A,C)K(B,D)+K(A,D)K(B,C). It is straightforward to

show that the feature space of Kp defined on protein pairs is

equivalent to the tensor product of the feature vector spaces of K

defined on individual proteins.

In this work, we employ a variety of kernel functions. Three

different amino acid sequence kernels are described in the next

section. For several vector data types, we use a radial basis kernel

(RBF) KR(A,B) = exp(2cIA–BI2), with c= 0.5. Finally, for net-

works, we use the diffusion kernel, defined as follows. Given a

graph G = (V,E), define a generator matrix H:

Hij~

1 if i,jð Þ[E

{di if i~j

0 otherwise

8><
>:

The generator matrix H corresponds to the adjacency matrix with

the diagonal entry equal to the negative of the degree of the

corresponding vertex. The diffusion kernel matrix KD is then

computed as the exponential of the generator matrix: KD = ebH.

KD(i,j) can be regarded as the sum of probabilities of reaching j

from i following all paths from i to j in a random walk. The

parameter b controls how rapidly a random walk diffuses away

from a vertex. In this study, we use a fixed diffusion parameter of

1. It can be shown that the exponential of any symmetric matrix is

symmetric and positive semidefinite. Therefore, the matrix KD is a

kernel matrix.

Data Types
Our CCPP predictor combines eleven different data types, listed

in Table 1. We first describe six data types that describe individual

proteins, followed by five data types that describe protein pairs.

Individual proteins
Sequence kernels. We include three sequence-based kernels

in this study: the spectrum kernel [31], the motif kernel [32] and

the Pfam kernel [3]. The spectrum kernel maps a protein to the

space of all subsequences of a fixed length (3-mers, in this case).

The feature vector of a protein contains the number of times each

3-mer occurs in its sequence. The motif kernel relies on a pre-

defined database of motifs, and represents each protein by the

number of times each sequence motif is present in its sequence.

The sequence motifs are derived from the eMotif database [33].

Pfam is a database of protein domain families represented as

hidden Markov models (HMMs) [34]. Each protein sequence is

compared against every HMM in Pfam, and the E-value statistic is

computed. The Pfam kernel then describes a protein as a vector of

log E-values of such comparisons.

Diffusion kernels. We apply the diffusion kernel to three

kinds of networks derived from the BIOGRID database [35]. The

networks consist of data generated by using (1) yeast two-hybrid,

(2) affinity capture-MS and (3) genetic interactions, including

synthetic lethality, synthetic growth defect, synthetic rescue,

dosage rescue, dosage lethality, dosage growth defect and

epistatic miniarray profile.

Protein pairs
For the remaining data sets, rather than define a kernel on

proteins and then apply TPPK, we directly compute features of

protein pairs. We then concatenate the resulting features and

apply a radial basis kernel to the resulting vectors.

Co-expression. Two proteins in the same complex are likely

to exhibit correlated gene expression profiles. We derive co-

expression features from five different microarray expression data

sets: diauxic shift [36], sporulation [37], cell cycle [38],

environment [39] and deletions [40]. A scalar product kernel is

computed for each expression data set after centering and

normalization. The feature value of a protein pair is the

computed kernel value of the two proteins in the pair. Each

expression data set is treated as one feature. Missing values are

replaced with the median values for the remaining protein if one

protein in the pair is missing or with the median values of all values

if neither protein has observed data.

Co-regulation. Proteins in the same complex are likely to be

under similar transcriptional control. The same transcriptional

regulator might bind to their regulatory elements, which can be

Table 1. Data types used in this study.

Data type Kernel Type Number

Protein sequence Pfam Protein 6700

Protein sequence motif Protein 6622

Protein sequence spectrum Protein 6700

Yeast two-hybrid diffusion Protein 4155

Genetic interaction diffusion Protein 3344

Affinity capture-MS diffusion Protein 3627

Interologs RBF Pair 1615

Co-expression RBF Pair 6320

Gene ontology RBF Pair 5306

Co-regulation RBF Pair 6270

Co-localization RBF Pair 4156

Some types of data described individual proteins and are transformed to pairs
by using the TPPK. The remaining data types naturally describe pairs of proteins
and can be used directly. The last column indicates the number of proteins with
information available for a particular type of data.
doi:10.1371/journal.pcbi.1000054.t001

Predicting Co-Complexed Protein Pairs
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measured by ChIP-chip assays. We compute the co-regulation

kernel based on the data from Lee et al. [41] This data set contains

the binding strengths of 113 transcription regulators to the DNA

elements upstream of their regulated genes. For a regulator, the

feature value of a protein pair is computed as the lower binding

strength of the two corresponding gene regulatory regions by the

regulator. The binding strength of a regulator to a gene regulatory

element is the negative logarithm of the p value reported by Lee et

al. [41] The co-regulation data for each regulator is treated as a

different feature.

Interologs. If the homologs of two proteins in another

organism are in the same complex, then these two proteins are

also likely in the same complex in yeast [42]. We use PSI-BLAST

[43] to identify sequence homologs. All complexes in BIND [44]

not in Saccharomyces cerevisiae are used to infer the CCPP

relationships. All the yeast ORF sequences are searched against

the non-redundant database for two iterations with an E-value

threshold of 0.005 to generate a position-specific scoring matrix.

The matrix is then used to score the yeast ORFs against a database

consisting of proteins in non-yeast BIND complexes for one

iteration with an E-value threshold of 10 to identify the homologs.

The feature values based on interologs can then be computed

based on the negative log E-values between sequences:

h(A,B) = maxi,j{I(i,j)min(l(A,i),l(B,j))}, where proteins i and j are

sequence homologs of A and B respectively, I(i,j) is an indicator

function indicating that i and j are two proteins in the same

complex from another organism based on BIND, and l(A,i) is the

negative log E-value from PSI-BLAST search between protein A

and protein i.

Co-localization. If two proteins are in the same complex,

then they must be localized to the same compartment at some

time. Fluorescence microscopic studies have been used to map the

location of yeast proteins on a genomic scale. We derive a co-

localization kernel based on the results of Huh et al. [45] Let fl be

the fraction of proteins present in a location l, and let I(i,l)be an

indicator function indicating that protein i is observed to localize

to l. The co-localization feature values are then computed as

follows: l(A,B) = maxl{I(A,l)I(B,l)(2log(fl))}; i.e., the feature value for

protein pair (A,B) is computed as the negative logarithm of the

fraction of proteins present in the most specific location where

both proteins A and B are observed to localize.

Gene Ontology terms. The Gene Ontology (GO) [46] is a

collection of standardized terms to describe the molecular

function, biological process or cellular component in which a

protein participates. If a protein is annotated with a GO term T,

then we also add the annotations of all ancestors of T to the

protein. Two proteins in the same complex are more likely to have

similar GO term annotations. Let fg be the fraction of proteins

annotated with a particular GO term g, and let I(i,g) be an

indicator function indicating that protein i is annotated with GO

term g. The GO feature values are then computed as follows:

G(A,B) = maxg{I(A,g)I(B,g)(2log(fg))}; i.e., a single feature value for

protein pair (A,B) is computed as the negative logarithm of the

fraction of proteins present in the most specific GO term where

both proteins A and B have annotations. We derive three different

features for the three ontologies.

Combining all of the kernels
The eleven different kernels are combined in two stages. First,

the three sequence kernels and the three diffusion kernels are

individually normalized by projecting onto the unit sphere, via

K̂ A, Bð Þ~ K A, Bð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K A, Að ÞK B, Bð Þ
p

. The six kernels are

then summed in an unweighted fashion. The TPPK transforma-

tion is applied to this summed kernel, and the result is added to the

RBF kernel defined on the five pairwise data types. With some

abuse of notation, the final kernel can be represented as follows:

K ~ Kp

1

3
KM Að Þz KS Að Þz KP Að Þð Þz

�

1

3
KD NY2Hð Þz KD NAPMSð Þz KD NGIð Þð Þ

�
z

KRBF DI : DCE : DGO : DCR : DCLð Þ

where A represents the amino acid sequences, the three N’s

represent the three interaction networks, the five D’s represent five

pairwise data types, and ‘‘:’’ indicates vector concatenation.

Experimental Framework
We use the publicly available PyML implementation of the

support vector machine algorithm (http://pyml.sourceforge.net).

Three-fold cross-validation with C = 10 is carried out to evaluate

the performance. In each split, each partition contains the same

number of positive and negative data points.

We measure the quality of a CCPP classifier by using receiver

operating characteristic (ROC) curves. This curve plots number of

true positives as a function of number of false positives for varying

classification thresholds. Our performance metric is ROC50, the

normalized area under this curve, up to the 50th false positive. A

perfect classifier receives an ROC50 score of 1.0; a random

classifier receives a score close to 0.

The ROC curve does not take into account the negative-to-

positive ratio in the data set. In the application of a classifier, we

are often interested in the false discovery rate, the fraction of

predicted positives that are false positives. This metric is highly

dependent on the negative-to-positive ratio. We report the false

discovery rate of the kernel with all features assuming a negative-

to-positive ratio of 600, which is the estimated ratio in the real

scenario [26].

Results

Diffusion Kernels Yield Superior Performance
We begin by demonstrating that, when directly ranking protein

pairs, the diffusion kernel improves the quality of the CCPP

predictor. Goldberg and Roth [11] introduced the hypergeometric

mutual clustering coefficient (MCC) and showed that it had the

best performance among four MCC formulations in ranking high

confidence protein-protein interaction edges above low confidence

ones. The MCC only considers paths of length two in a network.

The diffusion kernel, on the other hand, considers paths of all

lengths connecting two proteins. We compare ranking based on

the diffusion kernel values with ranking by the hypergeometric

MCC. The results in Figure 1A show that the diffusion kernel

produces a better ranking than the hypergeometric MCC for three

different types of networks—yeast two-hybrid, APMS and genetic

interactions. This result demonstrates that taking into account

paths of all lengths with the diffusion kernel improves edge

inference accuracy.

Next, we show that using a supervised learning algorithm

improves over direct ranking. We train a support vector machine

using the TPPK of the diffusion kernel, and we compare the

SVM’s performance with that of the simple method of ranking

pairs by the diffusion kernel values between the two vertices

directly. Figure 1B shows that, for all three types of networks, the

SVM classifier performs better. Among the three networks, APMS

Predicting Co-Complexed Protein Pairs
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yields the best performance. This is not surprising because we are

predicting CCPPs, which are directly measured by APMS.

Finally, we show that, in the context of SVM classification, the

diffusion kernel yields better performance than the simple linear

kernel. Figure 1C compares the ROC50 plots of SVMs trained

using the same networks but two different kernels. To compute the

linear kernel, each row of the adjacency matrix of a network is

treated as a feature vector, and the inner products between two

rows are computed as the corresponding kernel value. Like MCC,

the linear kernels consider only paths of length two. We normalize

the linear kernels and transform them using TPPK, as was done

for diffusion kernels. Figure 1C shows that, in the setting of SVM

classifiers, the diffusion kernels perform much better than the

linear kernels for all three networks.

Combining Kernels from Heterogeneous Data Improves
Performance

Different types of high-throughput assays yield complementary

information about CCPPs. We therefore trained a single SVM

using all three networks simultaneously. Figure 2A shows the

results of combining the three networks. We consider two ways to

combine the networks: combining adjacency matrices and then

performing the diffusion, versus performing diffusions separately

on each network and then summing the kernels. Our result

indicates that the second approach works better in predicting

CCPPs. Combining the three networks into one network fails to

preserve the different semantics associated with the three types of

edges, leading to worse prediction performance. Indeed, combin-

ing the three networks in this fashion leads to even worse

performance than is given by the best single network (APMS). In

contrast, diffusing on each network separately and subsequently

summing the three diffusion kernels improves significantly over the

APMS diffusion kernel alone.

Finally, we combined the diffusion kernels with the sequence

kernels and with the five protein pair data sets. As shown in

Figure 2B, the combination of the diffusion kernels with the sequence

kernels perform better than both the summation of the three

diffusion kernels and the summation of the three sequence kernels. In

particular, in a cross-validated test, the sequence and diffusion kernel

is able to rank 4789 out of 10980 positives above all negatives. The

addition of the RBF kernel based on co-expression, interolog, co-

regulation, co-localization and GO annotation features further

improves the ROC50 performance from 0.859 to 0.937.

The accuracy of the top-ranked predictions with the inclusion of

additional RBF kernel seems to decrease compared with the

TPPK of sequence and diffusion kernels alone, as indicated in the

leftmost region of the ROC50 plot. In particular, six pairs are

ranked high by the final classifier but are not labeled as positives

according to MIPS. We investigated each of these pairs. The

proteins ARC40 and ARC35 are annotated to be in complex

ARp2/3 complex by the Saccharomyces Genome Database

(SGD), and NOP14 and UTP7 are annotated to be in complex

U3snoRNP by SGD. Thus, these two pairs are likely true positives

missed by the MIPS database. In another top-ranked pair, UTP9

is a component of the U3snoRNP that is involved in processing of

pre-18S rRNA, and CBF5 is the pseudouridine synthase catalytic

subunit of box H/ACA snoRNPs, which is also involved in rRNA

processing. This pair has been identified by two APMS studies

[22,47]. The classifier with both the RBF kernel and TPPK of

sequence and diffusion kernels also predicts PDA1 and KGD1 to

be in the same complex with high confidence. PDA1 is the E1

alpha subunit of the pyruvate dehydrogenase complex, and KGD1

is a component of the mitochondrial alpha-ketoglutarate dehy-

drogenase complex. Both proteins bind to mitochondrial DNA

and are part of mitochondrial nucleoid. Finally, for two pairs, this

classifier predicts one protein in the kinetochore, DAD2 or DAD4,

to be in the same complex with one protein in the spindle pole

body, CNM67 or SPC98. Although the kinetochore and the

spindle pole body are both part of spindle, they are two separate

components. The classifier has difficulty distinguishing these two

components from each other. Thus the apparently worse

performance of the classifier with the additional RBF kernel in

the leftmost region of the ROC plot may partially be due to the

presence of true CCPPs in the negative training set as a result of

incomplete MIPS annotations.

The SVM Makes Predictions from Partial and Indirect
Evidence

A significant concern for any method that simultaneously

exploits multiple types of data arises from the increased prevalence

of missing data. If each given data type is missing 10% of its

entries, then in a data set consisting of four such data sources the

Figure 1. The ROC50 performance of the TPPK of diffusion kernels. (A) compares the ROC50 scores from ranking directly based on diffusion
kernel values and from ranking on hypergeometric MCCs. The ROC50 scores of the TPPK of diffusion kernels are compared with (B) ranking directly on
the diffusion kernel values and (C) the TPPK of linear kernels.
doi:10.1371/journal.pcbi.1000054.g001
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probability that a given example will have missing data from at

least one source is 120.95 = 41.0%. In our experiments, most of

the data sources have a significant proportion of missing data, and

the coverage varies across the data sets. Table 1 lists the number of

proteins with information available for each type of data used in

this study. Not surprisingly, the sequence kernels have the highest

coverage, whereas the interolog feature and the three networks

have the lowest coverage.

We therefore investigated how much the SVM’s performance

depends on the availability of all the data sources used. We

examined the 7,510 true positive interactions identified before the

50th false positive for the SVM trained using the summation of the

three diffusion kernels. For each correctly predicted protein pair

and each of the three networks, we asked whether there exists an

edge between the proteins and whether there exists a path of any

length between the two proteins. Figure 3 shows that most of the

correctly predicted pairs are not directly linked in any of the three

networks. Indeed, only a relatively small percentage of the protein

pairs are linked by a path of any length in all three networks.

These results demonstrate that the SVM is capable of making

correction predictions from partial and indirect evidence.

Estimation of the False Discovery Rate
In the previous sections, we compared the performance of

various methods using a data set with the number of negatives

chosen to be the same as the number of positives. In reality, the

number of negatives is much larger than that of positives, and the

negative-to-positive ratio has been estimated to be around 600

[26]. We next estimate the false discovery rate of the classifier with

both the RBF kernel and the TPPK kernel assuming a negative-to-

positive ratio of 600. Ideally, we would like to train on a training

set with the number of negatives equal to 600 times the number of

gold standard positives in our data set. However, this would

involve training an SVM on a data set of 10,9806601 = 6,598,980

protein pairs, which is not computationally feasible. Therefore, we

instead perform three-fold cross validation on a data set with the

number of negatives chosen to be ten times the number of

positives. In the computation of the false discovery rate, each

occurrence of a false positive is then multiplied by 60 to simulate a

negative-to-positive ratio of 600.

Figure 2. Combining different kernels. (A) Two-hybrid, APMS, and genetic interaction represent the performance of an SVM trained using the
TPPK of the diffusion kernel on a single network. Y2H|APMS|GI uses the diffusion kernel derived from a single network containing two-hybrid, APMS,
and genetic interaction edges. Y2H+APMS+GI represents the summation of three diffusion kernels based on the three networks. (B) The TPPK
sequence kernel is the TPPK of the summation of Pfam, motif, and spectrum kernels. The TPPK diffusion kernel is the same as Y2H+APMS+GI in (A).
The sequence+diffusion kernel is the TPPK of the summation of the three sequence kernels and the three diffusion kernels. The all features kernel is
the summation of the sequence+diffusion kernel with the RBF kernel.
doi:10.1371/journal.pcbi.1000054.g002

Figure 3. Prediction of CCPPs does not require the availability
of data in all three networks. In the figure, we examine the set of
7510 correctly predicted interactions before the 50th false positive for
an SVM trained using all three diffusion kernels. The figure plots the
percentage of correctly predicted protein pairs that are directly linked
(‘‘length = 1’’) or linked by a path of any length (length$1) in three, two,
one or none of the three interaction networks.
doi:10.1371/journal.pcbi.1000054.g003
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We train two classifiers, one that uses GO term annotations and

one that does not. GO term annotations are sometimes derived

from experimental observations of physical interactions or

complex memberships. Using GO term features may therefore

artificially inflate the performance of the classifier. To eliminate

the possibility of circularity, we trained a classifier using the TPPK

kernel and the RBF kernel without GO term features. On the

other hand, biologists may be interested in the best possible

predictions we can get using all available data. Especially when we

apply the classifier to the prediction of protein pairs without

interaction data, the issue of circularity is not a concern, and GO

term annotations from sources other than physical interaction or

complex membership may be useful in CCPP prediction.

Therefore, we also trained a classifier that includes the GO term

features.

Figure 4 plots the true postive rate (TPR) as a function of the

false discovery rate (FDR) for our classifiers with and without using

GO term features. To make this plot, we estimate the false

discovery rate separately for each fold of the cross validation with

the following formula:

FDR ~
600FP

600FP z TP

FP and TP are the number of false and true positives for a certain

threshold, respectively. For a certain number of false positives,

there often exist multiple corresponding numbers of true positives.

The median TP is used to compute a discrete sequence of

observed FDR and TPR. Linear interpolation is then used to

compute the TPR for all FDR values between any two adjacent

observed FDRs. The average TPR across the three folds for a

certain FDR is reported in Figure 4. Not surprisingly, inclusion of

the GO term features improves the performance. With a false

discovery rate of 10%, the classifier without using GO term

features achieves a true positive rate of 83.9% and the classifier

using GO term features achieves a true positive rate of 89.3%.

Validation of the APMS Data
Advances in tandem affinity purification (TAP) followed by

mass spectrometry make it possible to characterize complexes on a

large scale. Recently, two groups published high throughput

identifications of complexes in Saccharomyces cerevisiae [22,21].

Krogan et al. [22] identified 7,076 CCPPs, and Gavin et al.

[21] identified 6,531 CCPPs. However, these two data sets have

only 1,542 CCPPs in common. We used our MIPS training set to

train a model based on all our features with these two data sets

excluded from the APMS diffusion kernel. We then applied the

trained model to the prediction of CCPPs among pairs identified

by Krogan et al. or Gavin et al. Our model predicted 4536 pairs to

be positive, including 1824 pairs present in the training set and

2712 new predictions. Figure 5 shows the number of pairs in the

intersections between the two APMS data sets and our predicted

positive data set after removal of pairs in the MIPS training set.

Among the 2712 predicted positive pairs, 619 (22.8%) pairs are

present in both APMS data sets. This ratio is much higher than

that in the whole data set (8.2%). Given that the number of pairs in

either APMS data set is 10,226, and the number of pairs in both

APMS data sets is 839, if we randomly pick a subset of 2712 pairs,

the Fisher exact test p-value of the subset containing at least 619 pairs

in both APMS data sets is 4.2e–198. Because the pairs in both APMS

data sets are believed to be more reliable than the rest of the pairs in

the data set, it is reassuring that the positives predicted by our model

are enriched in these reliable pairs. Our model predicted a larger

fraction of pairs to be positive in the data set of Gavin et al. (48.5%)

than in the data set of Krogan et al. (38.0%)

Collins et al. [48] recently developed a Purification Enrichment

score and used this score to combine the two APMS data sets and

generate a data set of high accuracy. We compared the overlap

between our predicted positives and the data set of Collins et al.

Among the 10,226 pairs in either APMS data set but not in our

training set, 2985 pairs are present in the data set of Collins et al.

The 2712 pairs predicted to be positive by our classifier contain

1882 of the 2985 pairs. This large degree of overlap between our

predicted positives and the data set of Collins et al. is statisitically

significant according to Fisher’s exact test (p,1e–300). Thus, the

CCPPs predicted by our classifier are consistent with the results of

Collins et al.

Comparison with Related Work
Qi et al. [26] recently performed an extensive study comparing

multiple methods on the prediction of complex co-memberships,

physical interactions and co-pathway relationships. The study

concludes that, among various classification algorithms, random

forests performs the best, with random forest-based k-nearest

neighbor and SVMs following closely. We applied our kernel

Figure 4. The true positive rate vs. false discovery rate of two
classifiers using both the RBF and TPPK kernels. The false
discovery rate (FDR) was estimated assuming a negative-to-positive
ratio of 600:1. The black line indicates the performance of the classifier
using all features, while the red line indicates the performance of the
classifier without using the features based on GO term annotations. The
x-axis begins at an FDR of 3% because very small FDRs cannot be
estimated accurately for this dataset.
doi:10.1371/journal.pcbi.1000054.g004
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Figure 5. Enrichment of reliable pairs in predicted positives.
The figure shows the number of protein pairs in the APMS datasets of
Krogan et al. and Gavin et al. that are predicted to be negative (above
the line) or positive (below the line) by our approach. Pairs from the
MIPS training set are excluded. The predicted positive set is enriched
with reliable pairs that are identified by both groups.
doi:10.1371/journal.pcbi.1000054.g005
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methods to their gold standard data set following their learning

procedure. 30,000 protein pairs were randomly picked as the

training set with 50 from the positive data set and 29,950 from

protein pairs not in the positive data set. Another 30,000 protein

pairs were picked randomly from the remaining protein pairs as

the test set. The test set also contained 50 pairs randomly picked

from the positive data set. This training and testing procedure was

repeated 5 times instead of 25 times as done by Qi et al. to save

time. Our approach with both the RBF and TPPK kernels has a

mean ROC50 of 0.69 with standard deviation of 0.05. This is

slightly better than the best result (0.68) by Qi et al. Qi et al.

published their study before the availability of the two recent large

scale APMS studies [21,22]. We removed these two data sets from

the APMS network and tested on the data set of Qi et al. The

mean ROC50 is 0.68 with a standard deviation of 0.05. This is

similar to what Qi et al. reported as their best performance.

Qi et al. simulates a realistic scenario by using a negative-to-

positive ratio of 600:1 in the training set. However, in their setting,

each classifier only learns from 50 positive pairs. Because of this

relatively small number of positives in the training set, the resulting

classifier will likely not generalize as well as a method that learns

from all available positive pairs. This is why we instead chose to

train on a data set with all available positive training pairs and a

negative-to-positive ratio of 10, and simulate the real scenario by

magnifying each false positive by 60, as described above.

Predictions for All Yeast Protein Pairs
Having demonstrated that our method produces accurate

predictions, we proceeded to apply the two classifiers described

previously—trained with and without GO annotations—to all

protein pairs in Saccharomyces cerevisiae, excluding 809 dubious open

reading frames and 7 pseudogenes. For the SVM trained without

GO term annotations, 19,258 out of 17,307,786 protein pairs are

identified using an FDR threshold of 10%, including 3,946 pairs

that are not already annotated in the MIPS complex catalogue.

Figure 6 shows the number of predicted pairs as a function of FDR

threshold for both classifiers. As expected, at a given FDR

threshold, the classifier trained with GO terms predicts more

protein pairs than the classifier trained without GO terms. Both

sets of predictions can be downloaded from Yeast Resource

Center Public Data Repository (http://www.yeastrc.org/pdr), and

all predictions obtained using an FDR threshold of 10% are

included in the browseable interface of the repository.

We analyzed the novel predictions produced by the classifier

trained without GO annotations. First, we divided these novel

predictions into two sets: those protein pairs in which one protein

is a member of a MIPS complex, and those pairs in which neither

protein is in the manually curated MIPS complex catalogue.

Among the 3,946 novel CCPPs, 3,260 pairs are linked to one of

the 1,237 members of any MIPS complex, and the remaining 686

pairs do not involve any MIPS complex.

We began by investigating the extent to which the former set of

predictions extend known MIPS complexes. Ideally, a newly

identified member of a protein complex would be predicted to co-

complex with all known members of that complex. We therefore

identified all proteins that are predicted to be co-complexed with

every member of a known MIPS complex containing at least five

proteins. These predictions are listed in Table 2. Not surprisingly,

the majority of these predictions are not truly novel; rather, they

reflect the incompleteness of the MIPS annotation that we used to

train our SVMs. In fact, for all predicted new members in Table 2,

we were able to find convincing evidence in the scientific literature

supporting the prediction , and the citations are given in the table.

All the six predicted new members of the mRNA splicing

complex—SMB1, SNU114, SYF2, CLF1, ISY1 and CUS1—

have GO annotations of ‘‘nuclear mRNA splicing, via spliceo-

some.’’ The predicted new member of the exocyst complex 160,

EXO84 has the GO annotation ‘‘exocyst.’’ SOH1 (MED31), the

predicted new member of the mediator complex has been

annotated by SGD to be part of the mediator complex. Finally,

our classifier also predicted MHR1 to be part of mitochondrial

ribosomal large subunit. Although MHR1 is primarily annotated

to be involved in homologous DNA recombination and genome

maintenance in mitochondria, Gan et al. [49] has shown that

MHR1 is present in the mitochondrial ribosomal large subunit

fraction separated by sucrose density gradient centrifugation, and

the stoichiometry of MHR1 in purified large subunit is roughly

equal to that of MRPL1, a member of mitochondrial ribosomal

large subunit. In addition, Gavin et al. [20,21] found MHR1 to be

associated with mitochondrial ribosomal large subunit proteins by

high-throughput APMS studies. Overall, this consistent literature

support suggests that our classifier makes meaningful predictions.

Note that, for this analysis, we selected predictions by using very
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Figure 6. Total number of predicted CCPPs as a function of FDR
threshold. The red and green series correspond to classifiers trained
with and without GO term annotations, respectively. The upper two
series (marked with ‘‘+’’ signs) represent the total number of
predictions, and the lower two series (marked with x’s) represent the
number of novel predictions (i.e., excluding protein pairs in the MIPS
complex catalogue).
doi:10.1371/journal.pcbi.1000054.g006

Table 2. Predicted new members of the MIPS complexes.

MIPS ID Complex Number Predicted Members

500.60.10 Mitochondrial ribosomal
large subunit

44 MHR1 [49]

440.30.10 mRNA splicing 42 SMB1 and SNU114 [54]

SYF2, CLF1 and ISY1 [55]

CUS1 [56]

510.40.20 Kornberg’s mediator (SRB)
complex

21 SOH1 [57]

160 Exocyst complex 7 EXO84 [58]

The first two columns indicate the MIPS complex, the third column indicates the
number of proteins in the complex, and the last column indicates the predicted
new members of the complex.
doi:10.1371/journal.pcbi.1000054.t002
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stringent criteria, requiring that each predicted new member is

predicted to be in a co-complexed pair with every member in the

MIPS complex. In principle, we could make a larger number of

predictions with a more lenient cutoff. A table listing the predicted

new members of the MIPS complexes with at least 50% overlap

and two overlapping CCPPs is available in the on-line supplement

at http://noble.gs.washington.edu/proj/coco.

Finally, we analyze the set of novel predictions for which neither

protein is a member of a MIPS complex. At an FDR threshold of

10%, this set contains 686 CCPPs among 200 proteins. These

predictions can be represented as an undirected graph, with proteins

as nodes and predicted co-complex relationships as edges. We

identified predicted new complexes as maximal cliques in this graph,

where a clique is a set of nodes with every pair of nodes in the set

connected by an edge, and a maximal clique is a clique to which no

node in the graph can be added to create a larger clique. In general,

finding maximal cliques is an NP-hard problem, but because our

network is relatively small and sparse, we were able to perform

exhaustive enumeration to identify all maximal cliques. We thereby

identified 199 maximal cliques with size of at least 3, including one

clique of size 11, one clique of size 10, seven cliques of size 9, and so

on down to 48 cliques of size 3. Many of these cliques overlap one

another. For example, the clique of size 11 and the clique of size 10

share 9 proteins in common. We therefore created a network

consisting of just these predicted cliques. This network, shown in

Figure 7, consists of four connected components. We performed GO

enrichment analysis on these components with GO::TermFinder

[50] and summarized the results in Table 3. All four connected

components have significantly enriched GO term annotations for all

three ontologies. The members in these four connected components

can be found in the on-line supplement http://noble.gs.washington.

edu/proj/coco.

Discussion

In this paper, we developed multiple kernels from heterogeneous

data sources and combined them in an SVM classifier to predict co-

complexed protein pairs. We applied the diffusion kernel to the

two-hybrid, APMS and genetic interaction networks, and we found

that, in all three cases, a diffusion kernel performs much better than

a linear kernel or the mutual clustering coefficient (MCC). A

diffusion kernel computes the similarity between two vertices by

summing over all paths connecting the two vertices with paths of

shorter lengths receiving higher weight. In contrast, a linear kernel

or MCC only considers paths of length 2. Our results indicate that

taking into account the full network topology improves the

prediction of CCPP edges. We also applied our prediction scheme

to the protein pairs identified by two recent large scale APMS data

sets [21,22]. Our predicted positives are enriched with protein pairs

identified by both groups with high statistical significance, and are

consistent with the highly accurate data set of Collins et al. [48]

Our method can thus be used to select a subset of these large scale

results with better accuracy and reliability.

Different data sources provide complementary information, and

each data source may have the best predictive power for a subset of

data points. For instance, some protein pairs may have no sequence

homologs, and some other protein pairs may not be included in the

yeast two-hybrid screen experiments. Therefore, the combination of

a variety of data sources has the potential to improve CCPP

recognition. Kernel methods present a natural way to combine

features by the summation of kernel matrices. Our results show that

the TPPK applied to the summation of the sequence and diffusion

kernels performs significantly better than either the sequence or the

diffusion kernels alone. Inclusion of RBF kernels on five additional

data sets improves the ROC50 performance further from 0.859 to

0.937. We did not optimize the relative weights of the TPPK and

RBF kernels. One future direction is to learn these weights by using

semidefinite programming [51], sequential minimal optimization

[52] or semi-infinite programming [53].

The method described here is specifically designed to work well in

the presence of heterogeneous data—primary sequence, expression,

interaction networks, etc. As such, the method can be applied fairly

directly to other well-studied eukaryotic genomes. The minimal

requirement for applying this method, or indeed any supervised

learning algorithm, to a new organism is the availability of data (e.g.,

protein sequences) and labels (a set of known protein-protein

interactions). In practice, the latter is much more difficult to come by.

Typically, a genome with a sufficiently large set of high-quality

interaction labels will likely also have available non-sequence data

such as high-throughput interaction data and expression profiles.

Figure 7. The network of cliques of new CCPPs not in MIPS.
doi:10.1371/journal.pcbi.1000054.g007

Table 3. GO enrichment of predicted new complexes not in MIPS.

Biological Process Cellular Component Molecular Function

1 Nuclear mRNA splicing, via spliceosome (9e-52) Spliceosome (8e-43) RNA binding (4e-23)

2 Ribosome biogenesis and assembly (4e-50) Nucleolus (1e-47) snoRNA binding (1e-07)

3 Protein amino acid glycosylation (1e-06) Golgi apparatus (7e-07) Alpha-1,6-mannosyltransferase activity (1e-04)

4 Nucleocytoplasmic transport (7e-06) Nuclear envelope (3e-06) Ribonucleoprotein binding (1e-05)

Columns 2, 3, and 4 list the most significantly enriched GO term for each connected component in the predicted network for the biological process, cellular component
and molecular function ontologies, respectively. The numbers in the parentheses indicate the corrected p-values of the enrichment calculated with GO::TermFinder.
doi:10.1371/journal.pcbi.1000054.t003
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