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Integrating Information for Protein Function Prediction
William Stafford Noble and Asa Ben-Hur

1 Introduction

Most of the work on predicting protein function uses a single source of in-
formation — the most common being the amino acid sequence of the protein
(see Chapter 30). There are, however, a number of sources of data that are
predictive of protein function. These include protein—protein interactions
(Chapter 31), the genomic context of a gene (Chapter 32), the protein’s struc-
ture (Chapter 33), information mined from the biological literature (Chap-
ter 34) and data sources indicating coregulation, such as gene expression and
transcription factor binding [10]. A classifier that predicts function based
upon several sources should provide more accurate predictions than can be
achieved using any single source of data. However, the heterogeneous nature
of the data sources makes constructing such a unified classifier challenging.
We have divided the various methods for data integration into five cat-
egories (Figure 1). First, vector-space integration consists of characterizing
proteins in various ways by a set of variables, i.e. as vectors. Any standard
classification method can then be applied to the resulting vector-space repre-
sentation. An alternative — classifier integration — is to train a classifier on each
source of data and then combine the predictions of the various classifiers into
a single prediction. Kernel methods are a recent advance in the field of machine
learning [41]. These methods provide a coherent framework for integrating
various sources of data, applicable even when there is no explicit vector-
space representation of the data. Several sources of data form a network
that is informative of functional relationships. The prime example of such
a network is protein—protein interaction data. Proteins that interact often do
so because they participate in the same pathway. Therefore, the network of
protein—protein interactions in a cell can be informative of protein function
(see Chapter 32). The final two approaches model such networks and their
relationship to protein function. Graphical models, both directed and nondi-
rected, provide a probabilistic framework for data integration [23]. Modeling
is achieved by representing local probabilistic dependencies; the network
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Figure 1 Schematic description of the various methods for integrating
genomic information for prediction of protein function. (a) Integration
by concatenating data sources into a vector of features. (b) Integrating
predictions of several classifiers. (c) Data integration using kernel
methods. (d) Integration of network information, typically by Bayesian
methods. (e) Integration of several networks of functional relationships
into a single network.

structure of these models makes them a natural choice for capturing networks
of functional relationships. The last form of integration we discuss does not
aim at explicit prediction of protein function, but instead integrates several
networks of functional relationships, such as various forms of interaction,
coexpression, coregulation, etc., into a single network that unifies all those
relationships.

2 Vector-space Integration

Perhaps the simplest form of data integration is to summarize, for each pro-
tein, a variety of relevant types of data in a fixed-length vector and feed the
resulting collection of vectors into a classification algorithm. This approach
has the advantage of simplicity, but treating each type of data identically does
not allow us to incorporate much domain knowledge into the design of the
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classifier. For example, certain sources of data may benefit from a different
measure of similarity than others (see Section 4).

An early example of such an approach is described in Ref. [14]. This work
presents a limited form of data integration: many different types of protein
features are used, but most of these features are derived from the protein’s
amino acid sequence. Such features include protein length, molecular weight,
charge, amino acid composition (i.e. residue frequencies) and isoelectric point.
For a subset of the data for which three-dimensional (3-D) structures are
available, the authors also include several features based upon secondary
structure features; however, the experiments suggest (somewhat surprisingly)
that these features are not very informative. The authors apply three different
out-of-the-box machine learning algorithms to their data and compare the
resulting performance with that of the BLAST sequence comparison algo-
rithm [1] at predicting whether a sequence is an enzyme as well predicting the
first two digits of the protein’s Enzyme Commission (EC) number. Among the
three machine learning algorithms — the C4.5 decision tree, naive Bayes and
k-nearest-neighbor algorithms — the best-performing algorithm is k-nearest-
neighbor, which predicts the class of a query protein by finding the most
similar protein in the training set and outputting the corresponding label (see
Chapters 24 and 27 for more detailed descriptions of this algorithm). This
simple approach works as well as BLAST at discriminating between enzymes
and nonenzymes, but less well when the task is more specific. The latter result
is not surprising, since many of the enzyme classes are characterized by highly
specific sequence features [4].

A closely related set of experiments was described 5 years later in Ref. [24].
Like in the previous work, the authors summarize each protein using a fixed-
length vector of features derived from the amino acid sequence. After consid-
ering 25 such features, the authors settle on 14, which include straightforward
features such as average hydrophobicity and number of negatively charged
residues, as well as outputs from nine different previously described predic-
tion methods. These predictions include subcellular location, various types
of post-translational modifications, low-complexity regions, transmembrane
helices, etc. The resulting 14-element feature vectors are given to a feed-
forward neural network, which can subsequently predict EC numbers and
“cellular role” Gene Ontology (GO) terms with good accuracy.

A larger version of this type of experiment was described in Ref. [46].
In this work, the authors build classifiers for all EC protein families that
include 50 or more members (299 families), as well as 233 Pfam families [45].
Each protein is represented using an extremely rich collection of 453 features.
These features include statistics derived from the protein sequence, including
amino acid frequencies, predicted secondary structure content, molecular
weight, average hydrophobicity, isoelectric point, etc. In addition, the authors
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extract information about sub-cellular location, tissue specificity, etc., from
the Swiss-Prot database [3] and encode this information in nine of the 453
features. The paper demonstrates the utility of probabilistic decision trees
on this task. This algorithm is essentially an improved version of the C4.5
decision tree classifier, and does a better job of handling unbalanced data sets
(when negative examples far outnumber positive examples) and missing data,
and which exhibits more stable learning behavior.

Protein structure is often conserved when no significant sequence conser-
vation can be detected. Instead of making predictions using direct structure
comparison, one can represent structural features of the protein, analogously
to the methods presented earlier, that represent features of the protein se-
quence [15]. This paper characterizes a protein using several structural fea-
tures: the total surface area attributable to each residue type, the fractal
dimension of the protein surface (which quantifies how “crinkly” the surface
of the protein is), surface area to volume ratio, secondary structure content,
and the presence of cofactors and metals. Then a support vector machine
(SVM) classifier is used to predict the the first digit of the EC number of
enzymes whose structure is known. The prediction task prepared by Dobson
and Doig [15] is a very difficult one: in each of the six enzyme classes no two
structures belong to the same SCOP superfamily. Therefore, sequence-based
methods will provide very poor results. The authors have not compared their
approach to a sequence-based approach that uses the same set of sequences,
so it is unclear whether these structure-based features provide added value. In
general, the advantage of using sequence-based classifiers is that many more
protein sequences are available than protein structures.

One of the challenges in vector-space integration is determining the con-
tribution of each feature to the accuracy of the classifier and finding small
subsets of features that maintain or improve classifier accuracy. This task is
known as feature selection and is an active area of research in machine learning.
The interested reader can find a wealth of information about the state-of-the-
art of the field in Refs. [18,19]. The simplest approach to feature selection is the
so-called filter method whereby one computes for each feature a statistic that
reflects how predictive the feature is. Statistics that achieve this goal include
the area under the receiver operating characteristic (ROC) curve, the Pearson
correlation coefficient, the Fisher criterion score, etc. [18,19]. Independently
scoring each feature does not take into account the redundancy that often
exists in high-dimensional data such as gene expression and also ignores the
classifier with which the data will be ultimately classified. These issues are
handled by wrapper or embedded methods (see Refs. [18,19]). Wrapper methods
use a classifier to evaluate the merit of subsets of features and, as such, can be
combined with any classifier. In embedded methods, on the other hand, the
classifier is part of the selection process and uses the properties of the classifier
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to select relevant features. An example of a simple embedded method is the
recursive feature elimination (RFE) method [20], that for a linear classifier
iteratively removes features for which the magnitude of the corresponding
component of the classifer’s weight vector is the smallest.

The drawback of vector-space integration is modeling all features the same
way. One way to address this issue is to train different classifiers for each
source of data and then to combine the predictions of the different classifiers.
We call this integration method classifier integration, which is described in the
next section. Kernel methods, which are presented in Section 4, train a single
classifier, but allow more flexibility in combining data sources than the vector-
space integration methods, by allowing the user to define a different similarity
measure for each data source and thereby incorporating more domain knowl-
edge into the design of the classifier. Moreover, kernel methods are applicable
in modeling data sources such as protein sequences where no obvious vector-
space representation is available.

3 Classifier Integration

The second approach to building a unified protein classification algorithm
trains several classifiers and then combines their predictions. Gene finding
is a well-known bioinformatics problem for which combining the predictions
of several classification methods can provide more accurate predictions [40].
Conceptually, there are several classes of methods for combining the output
of different classifiers:

(i) Integration of different classification methods, each trained on the same
data.

(if) Integration of the same method trained on different subsets of the data
or on different subsets of features. This is an active field of research in
machine learning called ensemble methods, and includes methods such as
boosting [16], random forests [9] and various “committee machines” [6].

(iii) Integration of several classifiers, each trained on a different source of
data.

In our context we are focusing on the third class of methods. The standard
method for integrating the results of several classifiers is by a majority vote.
A more sophisticated approach is to use a classifier whose job is to integrate
the predictions of the various classifiers [6]. Not much work has been done
to apply classifier integration methods to protein function prediction. One
example of integrating the predictions of several classifiers is described in
Refs. [36,37] and is compared with kernel-based integration in those papers.
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See the next section for details. Classifier integration is most useful in cases
in which each classifier is available as a black-box, e.g. as is the case for gene
finders.

4 Kernel Methods

Recently, a class of algorithms known as kernel methods have become popular
in the machine learning community [41,43] and this popularity has extended
into computational biology [42]. A kernel is a function that defines similarities
between pairs of data objects and a kernel method is an algorithm whose
implementation depends on the data only through the kernel. More specif-
ically, a kernel is a similarity measure that satisfies the condition of being
a dot product in some space, i.e. K(x,y) can be expressed as (®(x), ®(y)),
where @ is some possibly nonlinear mapping. This mapping technique has
been known for decades, but has gained popularity recently in the context of
a particularly powerful classification algorithm, known as the support vector
machine (SVM) [8,12,50]. The so-called “kernel trick” — mapping data into a
higher-dimensional space by means of a predefined kernel function — often
results in a problem with more dimensions than examples. The SVM, it
turns out, can cope remarkably well with such cases, effectively reducing
the curse of dimensionality. Other kernel methods have subsequently been
described for classification, regression, clustering, principal components anal-
ysis, etc. [43].

Kernel methods provide a coherent framework for data integration. The
kernel function provides a form in which to represent a wide variety of data
types, including vectors, matrices, strings, trees and graphs. As a kernel
method represents data via the kernel function, any data set of n elements
can be summarized as an n-by-n matrix of pairwise kernel values. This
kernel matrix is a sufficient representation: once it is computed, the original
data can be discarded and the kernel method can still perform its function.
Furthermore, kernel matrices from different data sources can be combined
in a simple kernel algebra, that includes the operations of addition, multi-
plication and convolution [22]. The simplest way to combine kernels is by
adding them: adding kernels is equivalent to concatenating their feature space
representations. When the kernels are linear kernels over an explicit vector-
space representation this is the same as the vector-space integration described
in Section 2. The feature space for the multiplication of kernels is the product
of the feature spaces of the kernels. This approach has been used in the context
of predicting protein—protein interactions [5].

It is possible to perform vector-space integration with kernel methods.
Since kernel methods are sensitive to the scale of each feature, it is often
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useful to normalize the features such that they are on a similar scale, e.g. by
standardizing each feature. When performing integration at the kernel level,
an alternative is to normalize the kernel itself, rather than its feature space rep-
resentation by using a cosine-like kernel K'(x,y) = K(x,y)/+/K(x,x)K(y,y),
which is the same as projecting the feature-space representation to the unit
sphere.

In two related papers, Pavlidis and coworkers apply a kernel-based data
integration technique to the problem of protein function prediction [36, 37].
The authors use kernels to combine microarray expression data with phy-
logenetic profiles and use the resulting combined kernel to train an SVM
classifier to place yeast genes into MIPS functional categories [33]. This
kernel-based approach is compared to a vector-space integration scheme,
which simply concatenates the two types of data into a single vector, and
a classifier integration scheme, which trains two different SVMs and then
sums the resulting discriminants. In this case, the primary difference between
the vector-space integration scheme and the kernel approach is the use of
a third-degree polynomial kernel on each data set prior to integration. The
polynomial kernel maps each data set into a higher-dimensional space whose
features are all monomials over the original features with degree less than
or equal to 3. By performing this mapping on each data set individually,
rather than on the concatenated vectors, the method incorporates the prior
knowledge that inter-feature dependencies within one data set are more likely
to be relevant than dependencies between two different types of data. This
prior knowledge is borne out by the results, which show that the kernel-based
integration scheme provides better classification performance than either of
the other two schemes. Data integration by kernel summation has been
applied in several other bioinformatics applications: prediction of protein—
protein interactions [5] and prediction of metabolic networks [51]. Prediction
of metabolic networks, i.e. associating enzymes with metabolic pathways, can
be considered a form of function prediction; prediction of pairwise relation-
ships, or networks, is discussed in detail in Section 5.

Rather than simply adding kernels, one can consider a linear combination
of kernels, which can take into account how informative each kernel is. For
example, if we know that data set A is more useful (i.e. more relevant or less
noisy) than data set B, then we can combine the corresponding kernels as a
weighted sum: Kap = AKp + Kg. The only difficulty, of course, is how best
to select the data set weighting factor A. The value of the weighting factor
can be set using cross-validation over several choices for its value. This is
feasible when combining two kernels. When using a larger number of kernels
this is no longer practical and a different approach for weighting the different
kernels is required.
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Lanckriet and coworkers present a statistical framework for performing
kernel-based data integration with weights assigned to each data set [26,
28]. Rather than requiring that the weights be assigned a priori, the authors
train an SVM and learn the kernel weights simultaneously, using a technique
known as semidefinite programming (SDP) [27, 35,49]. In Ref. [28], this
SDP-SVM approach is compared to a previously described Markov random
field method for data integration [13] (described in Section 6). Lanckriet
and coworkers use the same classification of yeast genes into 13 broad MIPS
functional categories and five types of data as [13]: (i) the domain structure
of the protein, according to Pfam [45], (ii) known protein—protein interactions,
(iif) genetic interactions and (iv) cocomplexed proteins, as identified by the
comprehensive yeast genome database, and (v) cell cycle gene expression
profiles. Performance is measured using ROC curves [21]. The SDP-SVM
approach provides far better performance across all 13 functional classes.
A subsequent article [26] applies the same framework to two more yeast
classification problems — recognizing membrane proteins and recognizing
ribosomal proteins — and provides more details about the SDP-S5VM method.

Borgwardt and coworkers propose a kernel method for predicting protein
function using protein structure [7]. They represent the structure of a protein
as a graph whose nodes are secondary structural elements and whose edges
represent proximity in sequence or in 3-D space. The authors propose a
kernel that quantifies the similarity between two proteins using the random
walk kernel [17], combined with kernels that quantify the similarity between
the secondary structural elements of the protein. The proposed kernel thus
combines local properties of the protein with the global 3-D structure. They
use this kernel with an SVM classifier, as well as with more sophisticated
hyper-kernel machinery, to distinguish between enzymes and nonenzymes,
and predict the first EC number of an enzyme on a data set used in Ref. [15].
Their more sophisticated approach provides slightly better results than the
SVM vector-space integration approach of Dobson and Doig; it is likely that
integrating additional structural features into their kernel will provide further
improvement.

5 Learning Functional Relationships

Much of the data relevant to predicting the protein function is in the form
of a network or can be converted into a network structure. Protein—protein
interaction data is an example of such a network: proteins that interact often
participate in the same biological process, have a similar localization pattern
and, to a lesser extent, have a similar function [5]. Other sources of data that
are not directly in the form of a network can be converted into a network
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structure. Gene expression data can be represented by a graph whose edges
represent comembership in a gene expression cluster or weighted by the
correlation between the nodes; sequence data can be similarly converted to a
graph by means of sequence similarity scores from algorithms such as Smith-
Waterman [44] or PSI-BLAST [2]. Other sources of data for weighting edges
include similarity of phylogenetic profiles, gene fusion and cocitation from the
literature [29] (see also Chapter 32).

Given several networks of pairwise functional relationships, an impor-
tant task is to unify those networks into a single network [32]. Marcotte
and coworkers demonstrate how to combine pairwise functional relation-
ships from three different sources: correlated evolution using phylogenetic
profiles [39], correlated mRNA expression profiles and patterns of domain
fusion [31]. The data fusion approach is simple: the authors make a list of
all pairs of functionally related proteins in yeast according to each method.
This list contains 93 000 pairs of proteins. Functional links that are supported
by two out of three of the methods are considered “highly confident” and
functional annotations from proteins of known function are then propagated
across this high-confidence network. This simple approach yielded functional
annotations for more than half of the 2557 yeast proteins that were unanno-
tated at the time.

This simple approach of trusting only predictions that are made by more
than one method clearly has drawbacks, especially when some of the con-
tributing methods are more reliable than others or when the methods assign
confidence values to their predictions. Lee and coworkers address this issue
and propose a framework for unifying the scores associated with different
networks [29]. The following function assigns a log-likelihood score to a
linkage L between two proteins in the presence of a network E in the context
of a particular pathway or annotation:

LLS(L|E) zlog%,

where P(L|E) are the frequencies of the linkage L observed in the data and L
are instances where the linkage is not observed.

A similar problem is addressed by the MAGIC system [47]; MAGIC esti-
mates the probability that proteins i and j share a functional relationship. The
existence of a functional relationship is modeled using several pairwise rela-
tionships between proteins: coexpression, colocalization, physical interaction,
genetic interactions and comembership in a complex. The paper proposes a
Bayesian network model for estimating the probability of a functional rela-
tionship. A Bayesian network is a probabilistic model that represents a proba-
bility distribution in a form that makes it amenable to efficient computation by
encoding the probabilistic dependencies in the data in the form of a directed
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Figure 2 A naive Bayes model: Given that a functional relationship
exists between two proteins, the existence of any two relationships
between the two proteins (interaction, coexpression, etc.) are
independent.

graph (see Refs. [34,38] for textbooks on Bayesian networks). To illustrate the
approach we will consider a very simple model. Let R be the random variable
that denotes the existence of a functional relationship and let Xy, ..., X; be
the pairwise relationships that serve as evidence for the existence of the
relationship. We are interested in the probability P(R|X,...,X;). Using
Bayes rule, this probability can be expressed as:

P(Xy,..., XalR)P(R)

PRIX, 0 Xa) = =5 X))

The naive Bayes model is the assumption that each data source X; is condi-
tionally independent of the other data sources, i.e. P(X;|R, X;) = P(X;|R) for
j # 1[34,38]. This assumption enables us to write:

P(Xy,...,X4]R) = P(X1|R)P(Xy,...,X4/X1,R) = P(X1|R)P(Xa, ..., X4|R)
P(Xl‘R)P(X2|R)P(X3,...,Xd|X2,R)

—  P(Xi|R)P(X2|R)P(X;, ..., X4|R)

d
1

[TP(XIR)

1

Finally, we have:

[1; P(Xi|R)P(R)
[T P(X;)

The classifier resulting from this independence assumption is known as naive
Bayes. The independence assumption underlying the naive Bayes classifier
can be expressed as the directed graph shown in Figure 2. The interpretation
of the network structure is that a particular pairwise relationship between
two genes, e.g. physical interactions, is a consequence of the existence of a
functional relationship between the genes. The Bayesian network suggested
by Troyanskaya and coworkers introduces some dependencies between the

P(R|Xy,..., X4) = 1)
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various sources of data, but the general dependency structure is similar to the
one presented here. The conditional probability distributions at the nodes
of the network were determined by surveying a panel of experts in yeast
molecular biology. Thus, there is no learning involved in the construction of
the system. The pairwise relationships used in MAGIC are matrices whose i, j
element is the degree to which protein i and j share a particular relationship.
For some data sources this is a binary score, e.g. the proteins coded physi-
cally interact or their genes belong to the same gene expression cluster. For
other data sources, the score is continuous, e.g. when measuring expression
correlation.

Learning of metabolic networks is an example of learning of functional
relationships. In this problem, one learns a network whose nodes are enzymes
and whose edges indicate that the two enzymes catalyze successive reactions
in a pathway. Yamanishi and coworkers [51] integrate many sources of data in
the context of kernel methods and consider two approaches to this problem.
(i) A “direct” approach: a classifier is trained on positive examples — pairs of
enzymes that are known to belong to the metabolic network versus pairs of
enzymes that are not part of the network. (ii) “Learning the feature space”:
before training a classifier, a low-dimensional feature space is computed. This
space captures the proximity between enzymes that belong to the metabolic
network. Yamanishi and coworkers find that learning the feature space signif-
icantly improves the results, and, further, that integration of several kernels
based on expression data, phylogenetic profiles, localization and chemical
compatibility gives better results than any individual kernel.

6 Learning Function from Networks of Pairwise Relationships

When pairwise relationships between proteins are known, the function of
unknown proteins can be inferred using the “guilt by association” rule by
looking at the annotations of its neighbors in the network. This rule assigns
a functional annotation using a majority vote among the annotations of the
neighboring nodes. This method of assigning function is clearly an over-
simplification of the problem since it ignores the larger context in which a
node appears. An alternative approach is to integrate information across the
network, rather than relying only upon local information. In this section,
we describe several approaches that consider the network as a whole when
making predictions. All the methods predict a single function of interest
using a network in which each protein is a node. Binary node labels indicate
whether the protein has the function of interest and a third label value can be
added to represent proteins with unknown function. The nodes are connected
with edges whose weights reflect the degree to which the two proteins are
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related. Multiple networks can be used either by merging the networks or by
having several networks sharing the annotation variables.

Deng and coworkers proposed a Markov random field (MRF) model to take
into account multiple networks of relationships between genes [13]. Rela-
tionships such as protein—protein interaction and coexpression are symmetric:
no directionality can be assigned to such relationships. Therefore, Bayesian
networks that rely on a directed graph to model the dependencies between
variables are not readily applicable. MRFs, which represent probabilistic
dependencies using undirected graphical models, are therefore a more ap-
propriate modeling choice. The reader is referred to Ref. [38], for example,
for an in-depth discussion of MRFs. Deng and coworkers estimate an MRF
model for each function of interest, and each protein is assigned a variable
X; with a state of either 1 or 0, depending on whether or not the protein has
that function. The joint probability of X, the vector of variables, is written as:
exp(—U(x))/Z(8), where x is a value of X, Z(8) is a normalization factor that
depends on the parameters of the model and:

N
Ux) = —a) xi—B Y, [(1- xi)xj 4 x;(1 — x;)]
i=1 (ij)es
-y ), xxj—x )y (1-x)(1—xj), 2)

(i,j)€S (i,j)€S
where S is the set of edges of the graph, a = log(1X;) and = is the prior
probability for observing the function of interest. The first term in Eq. (2)
represents the prior probability of observing the configuration x. The rest of
the terms represent interactions between neighbors in the network: the first
counting the number of neighbors that do not agree on the assignment of
function, the second counting the neighbors that share the function of interest
and the third counting neighbors that are negative examples.

The training data is a subset of the proteins whose function is known.
Using this data, the probability distribution of the function of the rest of
the proteins is estimated by conditioning on the state of the known proteins.
The probability of an unknown protein having the function of interest can
then be obtained by summing over the possible configurations of the rest of
the unknown proteins. The authors propose a Gibbs sampling scheme for
estimating these probability distributions.

So far we presented the MRF model that uses a single network. When
several networks are available, the probability distribution is a product of
terms, each of which is of the form (2), sharing the same values of X. The
authors also add a component that takes into account the domain composition
of the given proteins (see Ref. [13] for the details). The prior probabilities for
a protein to be assigned the function of interest is determined using data on
protein complexes, according to the fraction of members of the complex that
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have that function. When that information is not available, a global prior
based on the frequency of the annotation is used. Given a set of possible
annotations, one can estimate the probabilities of each annotation. Multiple
annotations can then be assigned on the basis of the assigned probabilities.
The correlations between different annotations are not taken into account.

The authors apply their method to classify yeast proteins using MIPS anno-
tations combining networks from several sources:

e Physical interactions taken from the MIPS database, including 2448 interac-
tions between 1877 proteins.

e MIPS genetic interactions.

e Comembership in a complex obtained using TAP data, including 232 com-
plexes involving 1088 proteins with known function.

e Cell cycle gene expression data. A network is formed by forming edges
between proteins whose expression is above some threshold (0.8 in the

paper).

The authors find that combining multiple sources of data improves their
performance relative to learning from any single data source.

Karaoz and coworkers propose a general framework for integrating and
propagating evidence in functional linkage networks [25]. This approach is a
generalization of the “guilt by association” rule which, in essence, repeatedly
applies the rule until the network reaches a state that is maximally consistent
with the observed data. They begin with a functional linkage network in
which the edges are defined by protein—protein interactions and the edge
weights are defined by correlating the corresponding mRNA expression pro-
files. A separate network is defined for each functional annotation (GO term)
and each node in the network is assigned a label based upon whether the
protein is assigned the current GO term (1), a different GO term in the same
GO hierarchy (—1) or no GO term at all (0). The optimization procedure
attempts to assign labels (1 or —1) to the zero-labeled nodes so as to maximize
an “energy” function. Their energy function is similar to the one used in
Ref. [13], but the approach is limited to a single network and, rather than
assigning function according to the distribution of a variable, they use a local
minimum of the energy function. As described, the method integrates two
types of data: one used in the definition of the network topology and the
other defines the edge weights. A larger number of sources of data can be
integrated by performing a preprocessing step of network integration by one
of the methods described in the previous section so that the network or the
weighting are computed by more than a single source of data. A similar
approach is described in Ref. [11]; to address the situation that a node has no
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annotated neighbors and “guilt by association” cannot be applied at the node,
their model has a state space that indicates whether “guilt by association” is
ready to be applied at a node.

Rather than trying to estimate a probabilistic network model, one can take
a more direct approach of making predictions on the protein graph. An
example of this approach is found in Ref. [48]. This paper follows the stan-
dard machine learning paradigm of optimizing a two-part loss (or fitness)
function. This function is composed of an error term that measures how well
the predicted function follows the training data (existing annotations) and a
regularization term that ensures the “smoothness” (regularization, in machine
learning terms) of the predicted biological function. In the context of learning
on a graph, smoothness means that adjacent nodes have similar predicted
function. As in the previous approaches, the authors define a graph whose
nodes are proteins labeled as “+4-1” or “—1”, depending on whether the protein
is annotated with the function of interest. Let n be the number of proteins,
and assume that the function of the first p proteins is known and is given by
a vector y with elements equal to 1. Proteins with unknown function have
y; = 0. They define a variable f; which is the predicted annotation of node i.
The value of f is estimated by minimizing the function:

p n
2 2 2

Y (fi—y)*+u ) fF+ Y wilfi— f)*,

i=1 p+1 ij
where w;; is the weight on the edge connecting nodes i and j. The first term is
the error term; the rest are regularization terms: the second term ensures that
the value of f for unlabeled nodes is bounded and the third term ensures that
adjacent nodes have a similar annotation. Setting i = 1, this expression can
be written as:

2 2

(fi—vi)* + Y wii(fi— f;)

1 i

M-

1

where we take into account that the last n — p entries of y are zero. In order to
facilitate extending this formulation to multiple networks this is written as:

n}iynZ(fi—yi)%cv, fTLf <y,
=1

where L is the Laplacian matrix L = D — W, where D = diag(d;), d; = L; wj;.
Multiple networks are incorporated as:

Hj}iil Y (fi—yi)?+cr, fTLf <7,
Y i3

where Ly is the Laplacian for network k. Sparsity and a dual formulation
of the problem yield efficient algorithms that enable solving the problem



7 Discussion

even for large networks. The authors apply their method to predict MIPS
categories in yeast (the same data used in Refs. [13,28]). They use networks
based on Pfam domain composition similarity, coparticipation in a protein
complex, MIPS physical interactions, genetic interactions and cell cycle gene
expression similarity. They obtain similar performance to that of the SDP-
SVM method [28] and better than the MRF method [13].

7 Discussion

The methods described in this chapter illustrate that integrating several
sources of data provides improved accuracy in protein function prediction.
We described several approaches for data integration. Selecting among
these various approaches is difficult, because a large-scale experimental
comparison of different integration techniques has not been performed. In
the end, researchers tend to select the modeling technique that they are most
comfortable with.

A related problem for which data integration yields improved classification
accuracy is prediction of protein—protein interactions and the related problem
of prediction of comembership in a complex. In this domain, examples of
vector-space integration include the works described in Refs. [30,52]. These
papers use a collection of features to predict comembership in a complex using
probabilistic decision trees and random forests. In these experiments, features
include microarray experiment correlations, transcription factor-binding data,
localization, phenotype, gene fusion, gene neighborhood and phylogenetic
profiles. An example of kernel-based integration is found in Ref. [5] where
sequence-based kernels are used in conjunction with kernels based on features
such as GO annotations to predict protein—protein interactions. The use of
kernel-based classifiers allows the use of a high-dimensional feature-space
that cannot be represented explicitly in practice. As in the other examples
presented in this chapter, the combined method performs significantly better
than methods that use only a single source of data.
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