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ABSTRACT
In order to understand the molecular machinery of the cell, we
need to know about the multitude of protein–protein interac-
tions that allow the cell to function. High-throughput techno-
logies provide some data about these interactions, but so far
that data is fairly noisy. Therefore, computational techniques
for predicting protein–protein interactions could be of signific-
ant value. One approach to predicting interactions in silico is
to produce from first principles a detailed model of a candid-
ate interaction. We take an alternative approach, employing a
relatively simple model that learns dynamically from a large
collection of data. In this work, we describe an attraction–
repulsion model, in which the interaction between a pair of
proteins is represented as the sum of attractive and repulsive
forces associated with small, domain- or motif-sized features
along the length of each protein. The model is discriminat-
ive, learning simultaneously from known interactions and from
pairs of proteins that are known (or suspected) not to inter-
act. The model is efficient to compute and scales well to
very large collections of data. In a cross-validated compar-
ison using known yeast interactions, the attraction–repulsion
method performs better than several competing techniques.
Contact: sgomez@pasteur.fr

INTRODUCTION
Stable homeostasis of a living cell is a direct result of
the coordinated sequence of a large number of molecular
interaction events. Among the numerous molecules particip-
ating in such interactions, proteins are probably the most
important players. In particular, proteins transmit regulatory
signals throughout the cell, catalyze a tremendous number
of chemical reactions, and are critical for the stability of
numerous cellular structures. While progress is being made
in the identification of network components, significant chal-
lenges remain in their accurate characterization. For example,
the total number of possible protein interactions within one
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cell is astronomically large, a potentially limiting factor
for experimental analyses. In addition, some experimental
methods suffer from high rates of both false positive and false
negative predictions (Legrain et al., 2001; Edwards et al.,
2002). In particular, recent work indicates that interactions
found by such screens are far from complete, with thousands to
tens of thousands of interactions as yet unknown within yeast
(von Mering et al., 2002; Tong et al., 2002; Mrowka et al.,
2001). As a result, complementary in silico methods capable
of accurately predicting interactions would be of considerable
value.

A number of approaches for predicting either physical inter-
actions or functional relationships between proteins have been
developed. These approaches consider such information as the
conservation of gene order across genomes (Dandekar et al.,
1998; Overbeek et al., 1999), the conservation of specific sets
of proteins across species (Pellegrini et al., 1999), and the
fusion of two separate proteins in one species into a single
protein in another (Marcotte et al., 1999; Enright et al., 1999).
Evolutionary information contained within phylogenetic trees
likewise provides predictive power (Pazos and Valencia,
2001). Furthermore, with the recent development of high-
throughput methods such as the yeast two-hybrid system, new
techniques have been developed that exploit this experimental
protein interaction data directly in the prediction of interac-
tions among proteins (Bock and Gough, 2001; Wojcik and
Schachter, 2001; Gomez et al., 2001; Sprinzak and Margalit,
2001; Deng et al., 2002). These techniques attempt to discover
combinations of protein features in training data, such as pro-
tein domains and stretches of positive and negative charges,
that have predictive value when applied to novel proteins.

In this study, we describe the extension of one of these meth-
ods (Gomez et al., 2001) and, using a comprehensive set of
protein–protein interactions from Saccharomyces cerevisiae,
compare its performance with two other algorithms that have
also been used for interaction prediction, the support vec-
tor machine (SVM) and a method described by Sprinzak and
Margalit (2001). The method described here is probabilistic,
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and in its new form, allows the incorporation of both ‘positive’
as well as ‘negative’ information (interactions that are not
believed to exist within the cell). Results of this evaluation
show that this model outperforms those used for comparison,
providing the potential for more reliable inference of protein
interactions.

ALGORITHM
The model described here assumes that evolutionarily con-
served features within each protein of an interacting pair
are responsible for the interaction. Interacting pairs found in
one region of a network will often have homologs in another
region of the same network. Our assumption of evolutionary
redundancy implies that features that have predictive value
for a portion of a large network will also have predictive
value in the unknown part of the same network. Note also
that in the present context we are primarily concerned with
the prediction of physical or ‘binding’ interactions; however,
functional relationships are also amenable to analysis within
this framework.

We represent a molecular network as either a directed or
undirected graph G = 〈V , E〉, with vertices V and edges E.
Here, vertices correspond to proteins, and edges correspond to
physical interactions between them. We assume that any pair
of proteins within this network may potentially interact, and
we assign probabilities to all such interactions. The model
describing the stochastic generation of a complete network
consists of two probabilistic components, global and local,
which are assumed to be independent. The first component
models the topology of a given network, while the second
deals with individual interactions between pairs of proteins.
Together, these two components can be used to predict the
probability of any particular arrangement of edges among a
set of proteins. The probability of a specific network � is thus
P(data|�) = P(global)P (local).

For completeness we now describe the full model; how-
ever, the work described here focuses on predicting individual
protein–protein interactions, and thus implements only the
aspects of P (local) that carry out this function. We make this
simplification because the methods used for comparison make
predictions for individual edges and not complete networks.
Also, note that P (global) can be used with any method that
provides a network topology as input.

Given a set of vertices, the global model P (global) assigns
probabilities to all possible edges among them. For an undir-
ected graph, P (global) is a multinomial distribution with
parameters M (equal to |V |) and πi , where i = 0, 1, . . . , M .
For non-zero i the values πi are generated according to a Zeta
distribution [or a discrete power-law distribution Johnson and
Kotz (1969)]

πi = ci−γ , (1)

where parameters c and γ are assumed to be known from
previous studies. For i = 0 we use π0 = 1 − ∑M

k=1 πk .

Note that Equation (1) has been previously shown to describe
the connectivity of metabolic and protein interaction networks
(Jeong et al., 2000, 2001; Gomez et al., 2001). Thus P (global)
assigns higher probabilities to those networks that ‘look’, in
terms of their connectivity distributions, more biologically
realistic.

In a complementary manner, P (local) assigns a probab-
ility to any set of edges that connect a group of vertices.
Specifically,

P(local) =
∏

(vi ,vj )∈E

p̂(vi , vj )
∏

(vi ,vj )/∈E

[1 − p̂(vi , vj )], (2)

where p̂(vi , vj ) is the estimated individual edge probability
between vertices vi and vj . Thus, when assigning a probability
to a particular arrangement of edges, both existing and missing
edges are taken into account. We now describe how these
individual edge probabilities are calculated.

In this model, proteins are treated as sets or ‘bags’ of
domains, and we assume that at least two features, one from
each protein, are required for an interaction to exist between a
protein pair. Because proteins are assumed to consist of mul-
tiple domains, all domains are considered in the context of
protein–protein interactions and hence fall into two categor-
ies: domains that are informative with respect to predicting
protein–protein interactions and domains that are not. Inform-
ative domains may indicate either the presence of an edge
(e.g. domains that can physically interact), or the absence of
an edge (e.g. a pair of domains that never occurs in inter-
acting proteins). Non-informative domains are those that are
distributed randomly and uniformly with regard to the abil-
ity of a protein to participate in interactions. In estimating
domain–domain attraction probabilities, we want an estim-
ator that gives an expected value of 0.5 for non-informative
domain pairs, while giving estimates greater than 0.5 for edge-
present domain pairs, and estimates below 0.5 for edge-absent
domain pairs.

Let us consider a pair of uninformative protein domains, φ

and ψ , that are distributed with uniform probability over the
whole protein universe with densities ρφ and ρψ , respectively.
Imagine that we are estimating the probability of observing
an interaction between a pair of proteins, one of which has
domain φ and the other domain ψ , from a protein–protein
interaction network with |V | vertices (proteins) and |E| undir-
ected edges (real protein–protein interactions, each interaction
counted just once). The expected number N+

φψ of interact-
ing pairs of proteins that have domains φ and ψ in separate
proteins is

N+
φψ = |E| · 2 · ρφ · ρψ . (3)

Similarly, the expected number of non-interacting pairs of
proteins containing domains ψ and φ in the same network is
given by

N−
φψ =

( |V |(|V | − 1)

2
+ |V | − |E|

)
· 2 · ρφ · ρψ . (4)

1876



Predicting protein–protein interactions

We are trying to find an estimator of the form

p̂(φ, ψ) = n+
φψ

n+
φψ + γ n−

φψ

, (5)

where n+
φψ and n−

φψ are, respectively, the number of times
domain pair (φ, ψ) is seen in interacting and non-interacting
proteins. (The observed random variables n+

φψ and n−
φψ have

the expected values N+
φψ and N−

φψ , respectively.) Parameter
γ is a weighting coefficient that is selected so that the expect-
ation of p̂(di , dj ) is equal to 0.5. In other words, we need to
solve with respect to γ the following equation:

1

2
= N+

φψ

N+
φψ + γN−

φψ

. (6)

Doing so gives us the optimum value

γ = |E|
|V |(|V | − 1)/2 + |V | − |E| . (7)

Note that, in the case of a directednetwork, γ is replaced by

γ = |E|
|V |2 − |E| . (8)

Further, we need to ensure that in the absence of observa-
tions (n+

φψ = n−
φψ = 0), we still have a non-zero probability

of interaction between domains φ and ψ . This restriction can
be accomplished by introducing a pseudocount, �, in the
following way:

p̂(φ, ψ) = n+
φψ + �/2

n+
φψ + γ n−

φψ + �
, (9)

where the value of � is set to 0.01. In this work, we also
compare the results of this model with our earlier one, which
calculated the domain–domain interaction probability as

p̂(φ, ψ) = 1

2

(
1 + n+

φψ

nφnψ + �

)
, (10)

where nφ and nψ are the number of vertices containing
domains φ and ψ , respectively, see Gomez et al. (2001);
Gomez and Rzhetsky (2002). We refer to the previous model
as the attraction model, and the model presented here as
attraction–repulsion modeldue to the inclusion of negative
interactions n−

φψ .
For the attraction–repulsion model, we combine mul-

tiple domain–domain interaction probabilities into a single
edge probability by taking only the single most informative
domain–domain probability

p̂(vi , vj ) = argmax
p̂(φ,ψ)

|(p̂(φ, ψ) − 0.5)| (11)

for all φ ∈ vi , ψ ∈ vj .

Similarly, for the attraction model we use our original
method of averaging over all domain–domain interactions
(Gomez et al., 2001):

p̂(vi , vj ) =
∑
φ∈vi

∑
ψ∈vj

p̂(φ, ψ)

|vi ||vj | , (12)

where |vi | is the number of distinct protein domains observed
in protein vi .

METHODS

Data
In our experiments we use yeast protein–protein interac-
tion data collected in an independent study (von Mering
et al., 2002). These data comprise interactions identified
via six different methods: high-throughput yeast two-hybrid,
correlated mRNA expression, genetic interaction (synthetic
lethality), tandem affinity purification, high-throughput mass-
spectrometric protein complex identification and computa-
tional methods. All interactions were classified into one
of three confidence categories, high-, medium- and low-
confidence, based on the number of different methods that
identify an interaction as well as the number of times the
interaction is observed. For the purposes of these experi-
ments, high- and medium-confidence interactions are labelled
‘positive’, and low-confidence interactions are considered
‘unknown’. All other interactions are labelled ‘negative’.
Clearly, this latter set of proteins will contain many errors—
pairs of proteins that interact but are not known to do so.
Consequently, the resulting performance measurements will
tend to overestimate the false positive rate. However, without
relying upon simulated data, this overestimation is currently
unavoidable. Furthermore, for the purposes of comparing
prediction algorithms, the resulting inaccuracy will be approx-
imately uniform with respect to each computational method
that we consider.

Feature extraction
In order to represent a pair of proteins, we consider two differ-
ent types of features. The first is computed using a collection
of hidden Markov models (HMMs) of protein domains from
the Pfam 7.2 database (Sonnhammer et al., 1997; Bateman
et al., 2002). These models represent evolutionarily conserved
structures and are assumed to be related to protein function.
Using HMMER 2.0 (Eddy, 1998), we compute the E-value
of the best match of each Pfam domain to each yeast protein.
Each such E-value serves as one feature in this representation.

The Pfam E-values, as well as the interaction data, are used
to reduce the size of the data set. Following (Sprinzak and
Margalit, 2001), we eliminate from consideration all pro-
teins that do not match at least one Pfam model with an
E-value less than 0.01. From within this set, we select all
proteins that interact with at least one other protein. A total of
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1714 proteins, containing 1015 different domain types, sat-
isfy these criteria. The resulting set of 1.46 million protein
pairs contains 7735 positive interactions and 19315 unknown
interactions. The unknown interactions are not considered
further.

This collection of 1714 proteins is also characterized using
a second type of feature. Rather than identifying protein
domains, these 4-tuplefeatures attempt to identify short amino
acid subsequences that occur in interacting proteins. To com-
pute these features, the sequence alphabet is first reduced
from 20 amino acids to six categories of biochemical similar-
ity [{IVLM}, {FYW}, {HKR}, {DE}, {QNTP}, and {ACGS}
(Taylor and Jones, 1993)]. After this reduction, there are
64 = 1296 possible substrings of length 4. For a given pro-
tein sequence, the 4-tuple feature representation is simply
a binary vector of length 1296, in which each bit indic-
ates whether the corresponding length-4 string occurs in the
protein.

Support vector machine
The SVM is a binary classification algorithm (Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000). As such, it is well
suited to the task of discriminating between interacting and
non-interacting protein pairs. The algorithm has found wide
application in many fields (Cristianini and Shawe-Taylor,
2000), including bioinformatics applications such as recog-
nition of translation start sites, protein remote homology
detection, microarray gene expression analysis, functional
classification of promoter regions, and peptide identification
from mass spectrometry data. SVMs have previously been
used in the prediction of protein–protein interactions (Bock
and Gough, 2001). The experiments reported here employ the
Gist 2.0 software (P. Pavlidis, I. Wapinski and W.S. Noble,
submitted for publication) with the default parameter settings,
including a linear kernel function and a 2-norm soft margin.
Each pair of proteins is represented via the concatenation of
the corresponding Pfam vectors. For fairness of comparison,
we do not attempt to optimize the free parameters of the SVM,
although experiments performed on a subset of the data indic-
ate that varying the most important parameter (the weight
associated with the soft margin) does not significantly improve
the results (data not shown).

High-scoring sequence signatures
We also compare our method with that of Sprinzak and
Margalit (2001). This method is similar to our original model
(Gomez et al., 2001) in that it is trained with experimental
interaction data, attempting to find domain or sequence signa-
ture pairs that are highly correlated with protein interactions.
The model itself is straightforward, involving the creation of
a contingency table detailing the number of times domain φ

is seen in combination with domain ψ within an interaction.
An interaction between a pair of proteins is predicted to take
place if any single domain pair between a pair of proteins has

a score S above a predefined threshold

S = log2

(
fφψ

fφfψ

)
, (13)

where fφψ = n+
φψ/|E|, and fφ = nφ/|V |. When the observed

frequency is zero, a dummy score is assigned (in this case
−10.0) that is smaller than the minimum value found in the
training data.

Note that for non-informative domains φ and ψ the expected
value of fφ is equal to ρφ , while the expected value of fφψ is
equal to 2 · ρφ · ρψ . Therefore, the expected value of score S

for non-informative domains is equal to one.

Cross-validation and scoring
The performance of each prediction algorithm is measured
using three-fold cross-validation. In this paradigm, the data
are split into three equal-sized parts. The learning algorithm
is trained on two parts and tested on the remaining part. This
train-test procedure is repeated three times, and the resulting
collection of predictions is merged. In the experiments repor-
ted here, the entire cross-validation procedure is repeated five
times in order to estimate variance.

In previously published cross-validation experiments on
protein–protein interaction prediction, including our own,
the cross-validation was performed on interactions. Here, by
contrast, we perform cross-validation on individual proteins.
Thus, each method is trained on all pairs of interactions from
within a given training set of proteins, and each method is
tested on interactions within a disjoint test set of proteins.
In this approach, if the training set contains one interaction
between protein A and B, then the test set will not contain an
interaction between protein A and some other protein C. Per-
forming cross-validation, as we do, on proteins rather than on
interactions, ensures that the algorithm learns about the way
proteins interact in general, rather than about the interaction
characteristics of individual proteins.

The quality of a set of predictions is measured using the
receiver operating characteristic (ROC) score. The output of
each prediction algorithm is a ranking of protein pairs, in
which the pair of proteins at the top of the list is estimated
to be the most likely to interact. This ranked list can be con-
verted into a set of binary predictions by applying a decision
threshold by comparing the decision threshold T with the
score s associated with each pair of proteins. If s ≥ T , then
the proteins are predicted to interact; otherwise, they are not.
Rather than measuring the accuracy of the predictions result-
ing from a single decision threshold, the ROC score integrates
over all possible decision thresholds, thereby evaluating the
quality of the entire ranking. The ROC curve plots, for vary-
ing decision thresholds, the true positive rate as a function of
false positive rate (Hanley and McNeil, 1982; Gribskov and
Robinson, 1996), and the ROC score is the area under this
curve. For a perfectly random classifier, these two rates will
be approximately equal, yielding a diagonal curve and a score
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Fig. 1. ROC score summary. ROC scores are shown for eight dif-
ferent prediction methods. Under each bar, the first line of the label
indicates the algorithm employed: ‘Seq’ for the sequence-signature
method, ‘SVM’ for the support vector machine, ‘A’ for the attraction
model, and ‘A–R’ for the attraction–repulsion model. The second
line indicates the type of features used (Pfam domains, 4-tuples, or
both). The methods marked ‘mix’ are tested on interactions for which
one protein is in the training set and one is in the test set (see text).
Error bars indicate standard deviation over five cross-validated tests.

of 0.5. For a perfect classifier, all of the positives will appear
before all of the negatives, yielding a score of 1.0.

RESULTS
Our primary experimental results are summarized in Figure 1.
These results demonstrate the utility of the attraction–
repulsion model. Of the two types of features, Pfam domain
profiles provide more information than 4-tuples. Overall, the
prediction performance of the attraction–repulsion method
is significantly better than that of the attraction-only model
and the sequence-signature method. The attraction–repulsion
model performs approximately as well as, but far more effi-
ciently than, the SVM. In this section, we discuss these results
in more detail.

First, note that all of the methods tested here perform sig-
nificantly better than chance, indicating that some learning is
occurring in every case. A random classifier receives an ROC
score of 0.5, and the standard deviations on all of the observed
ROC scores are clearly far better than random.

With respect to selecting a feature set, Figure 2 shows
that the Pfam domain features are more informative than the
4-tuple features. The figure shows histograms of domain–
domain interaction probabilities, computed from both types of
features using Equation (9). Tuples have a mean probability of
0.46. This result implies that the majority of tuples carry very
little information, i.e. nearly all are near the completely

uninformative value of 0.5. The slight negative shift of the
distribution suggests that when tuples are informative, it is
with regard to the absence of an edge. By contrast, the shape of
the corresponding distribution for Pfam domains suggests that
a much greater proportion of pairs are informative. The distri-
bution mean of 0.34 again suggests that when Pfam domain
pairs are informative it is with regards to the absence of an
edge. Note, however, that there are a number of pairs in the
0.9–1.0 probability range, indicating the existence of a sig-
nificant number of pairs that are highly correlated with the
existence of an edge between a pair of proteins.

The relative value of the Pfam and tuple features is further
illustrated in Figure 1. The histogram bars labeled ‘A–R Tup’
and ‘A–R Pfam’ correspond to the attraction–repulsion model
computed with tuple and Pfam vectors, respectively. A t-test
indicates that these measurements are significantly different
(with 95% confidence).

Focusing only on the Pfam features, we compare the
recognition performance of the attraction–repulsion model
[specifically, the rankings of probabilities generated from
Equation (9)] with rankings produced by sequence signa-
tures, the SVM, and the attraction-only model [Equation (10)].
These results are shown in Figure 1, with bars labelled ‘Seq
Pfam’, ‘SVM Pfam’, ‘A Pfam’, and ‘A–R Pfam’. The best
ROC score of 0.696 ± 0.018 originates from the attraction–
repulsion model. The SVM approach performs similarly, with
a score of 0.674 ± 0.028. Overlap in the standard devi-
ations of these two methods suggests that they perform nearly
identically, and a t-test indicates that we cannot reject (with
95% confidence) the possibility that their means are the
same. On the other hand, both methods significantly outper-
form the sequence-signature method, which has a score of
0.627 ± 0.020, as well as the attraction-only model with a
score of 0.633 ± 0.021.

Of the two best-performing methods, the attraction–
repulsion model is clearly more efficient. Indeed, the SVM
as formulated here is barely efficient enough to be useful.
Training the SVM on the entire collection of 1.2 million
labeled interactions was not feasible, especially because
each interaction is represented via a vector of length 7470
(twice the total number of available Pfam domains). Luck-
ily, preliminary experiments (data not shown) indicated that
sampling randomly from the negatively labeled examples
(which predominate the training set) is sufficient to yield good
performance: the ROC score stops improving after approxim-
ately 1% of the negatives are used. Still, training the SVM even
on this subset requires ∼4 h. Thereafter, simply making a pre-
diction for a single vector requires computing a scalar product
with respect to most of the training set, which amounts to
12 000 ∗ 7470 = 89 million multiplies per prediction. These
calculations could be sped up by using feature selection tech-
niques to reduce the input vector size and by more strongly
encouraging sparseness of the SVM solution. But the SVM
training is still fundamentally an O(n2) algorithm, and will
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Fig. 2. Example distributions of (A) tuple–tuple and (B) Pfam domain–domain interaction probabilities. Each plot is a histogram of the
probabilities calculated using Equation (9) across all features in one training set.

essentially always be slower than the much simpler, linear
time attraction–repulsion model.

The cross-validated experiments described so far measure
the ability of each algorithm to predict an interaction between
two proteins for which no previous interactions are known.
In practice, of course, a real predictor would also be tested
on some proteins for which we have partial information about
its interactions. In order to determine the effect of this par-
tial information, we test the attraction–repulsion model on
interactions between one training set protein and one test set
protein. These results are shown in Figure 1 (bars labeled
‘mix’). When learning from tuples, the effect of the par-
tial information is minimal; however, for Pfam domains, the
predictions of interactions involving a previously observed
protein improve significantly, with mean ROC scores increas-
ing from 0.696 ± 0.018 to 0.818 ± 0.011. This effect is
understandable because tuples are extremely frequent, and in
a given training set all tuples are observed at least once. There-
fore, prediction of an interaction with a previously observed
protein does not provide much additional information. On the
other hand, the strong effect for Pfam domains can be attrib-
uted to the relative infrequency with which any given Pfam
domain is observed. Thus, in situations where the interactions
of at least some of the proteins have been observed before, we
expect much higher prediction accuracies.

Finally, we briefly investigate the possibility of com-
bining the two different sets of features, Pfam domains
and 4-tuples, and learning from them simultaneously. The
resulting learner, however, does not perform significantly bet-
ter than a learner trained only on the Pfam domains. In order

to make a prediction from combined features, we compare the
probability assigned to each edge for each feature type. The
final edge probability is calculated as before from each type of
feature, and the maximally informative (i.e. farthest from 0.5)
probability is assigned to the prediction. Thus, the final list of
probabilities is a mixture of entries from both Pfam–Pfam and
tuple–tuple interactions. Pfam–Pfam and tuple–tuple interac-
tions contribute essentially equally to the final prediction with
approximately 51% of predictions being generated from Pfam
domains. Combining predictions in this manner generates an
ROC score of 0.713 ± 0.012, shown in Figure 1 as ‘A–R
both’. A t-test at the 95% confidence level fails to distin-
guish this value from using Pfam features only. Thus, it is not
clear whether this simple means of combining the Pfam and
tuple–tuple interactions is of predictive value.

DISCUSSION
This work describes a probabilistic method for inferring the
existence of protein–protein interactions. Within the context
of our experiments, the attraction–repulsion model emerges
as a strong candidate, benefiting greatly from the inclusion
of negative information into predictions. In comparison, the
attraction-only and sequence-signature models provide less
accurate predictions, and the SVM provides comparable per-
formance at increased computational expense. In general, the
learning approach to prediction of protein–protein interactions
provides the ability to better understand the functional role of
newly discovered proteins by discovering potential links with
proteins of known function or in previously studied pathways.
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With the increasing amounts of molecular data, continued
development of this and related methods will provide a useful
set of tools for the understanding of molecular function.

Our results point to several paths for future research. For
example, the SVM approach described here is simplistic and
could be improved via a better feature selection algorithm,
a knowledge-based kernel function, or by using a more
light-weight learning algorithm, such as an ensemble of
perceptrons. Similarly, we have experimented here only
minimally with techniques for combining information from
multiple sequence-based feature types. We expect to gain
significant power by using more sophisticated data fusion
methods across a wider variety of data types. Finally, the
scope of this investigation can be expanded in several dir-
ections, including employing our global model and learning
from interaction data from multiple species.
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