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ABSTRACT

Motivation: The regulatory machinery controlling gene ex-
pression is complex, frequently requiring multiple, simulta-
neous DNA-protein interactions. The rate at which a gene
is transcribed may depend upon the presence or absence
of a collection of transcription factors bound to the DNA
near the gene. Locating transcription factor binding sites
in genomic DNA is difficult because the individual sites are
small and tend to occur frequently by chance. True bind-
ing sites may be identified by their tendency to occur in
clusters, sometimes known as regulatory modules.
Results: We describe an algorithm for detecting oc-
currences of regulatory modules in genomic DNA. The
algorithm, called MCAST, takes as input a DNA database
and a collection of binding site motifs that are known to
operate in concert. MCAST uses a motif-based hidden
Markov model with several novel features. The model
incorporates motif-specific p-values, thereby allowing
scores from motifs of different widths and specificities to
be compared directly. The p-value scoring also allows
MCAST to only accept motif occurrences with significance
below a user-specified threshold, while still assigning
better scores to motif occurrences with lower p-values.
MCAST can search long DNA sequences, modeling length
distributions between motifs within a regulatory module,
but ignoring length distributions between modules. The
algorithm produces a list of predicted regulatory modules,
ranked by E-value. We validate the algorithm using
simulated data as well as real data sets from fruitfly and
human.

Availability: http://meme.sdsc.edu/MCAST/paper
Contact: tlb@maths.ug.edu.au

INTRODUCTION

does not code for proteins (Mouse Genome Sequencing
Consortium, 2002). Perhaps the most important function
of this non-coding DNA is to regulate the rate at which
individual genes are transcribed. We refer to the se-
guence elements that modulate transcription as regulatory
modules (Krivan and Wasserman, 2001; Wasserman and
Fickett, 1998), though they have alternatively been re-
ferred to as promoter modules (Klingenheffal., 1999),
cis-element clusters (Fritét al., 2001), anctis-regulatory
modules (Bermaiet al., 2002). A regulatory module typ-
ically lies upstream of the gene that it regulates, though
examples of downstream, intronic and distant regulators
do occur. Each module contains a dispersed collection
of short sequences (approximately 6—20 bases), each of
which specifically binds to a particular transcription factor
protein. The complex interaction among the genomic
DNA, the various transcription factors, and the RNA
polymerase yields an overall rate of transcription for that
particular gene (Ptashne and Gann, 2002).

Two primary computational challenges are associated
with regulatory modules. The first involves identifying
transcription factor binding site motifs. A given transcrip-
tion factor can typically bind to a variety of similar, short
sites. Hence, given a collection of regulatory modules, it
is non-trivial to locate within them the binding sites, even
if the given sequences are knowapriori to interact with
a particular transcription factor. The problem becomes
harder when the locations of the regulatory modules are
uncertain (so that the input sequences must be quite long),
or when multiple transcription factors operate on the same
set of sequences.

In this work, we address a second, related task (see
Fig. 1). We assume that the first problem is solved—that
the binding sites have been located within a collection of

One surprise from the recent analysis of the mMousgeqiatory modules. We are provided as input a handful of
and human genomes is the relatively large portion ohining site models (motifs) of transcription factors that
the mouse genome that is evolutionarily conserved bulre pelieved to operate together. We are also given a large
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sequence database. The task is to locate in that database
occurrences of regulatory modules containing the given
binding sites. Hence, the output is a list of predicted site-
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0.000013
— | 00045 s —— The scoring function
e | database g'gggi = m_ Conceptually, we think of the alignment between the
- ' = qguery motifs and a target DNA sequence as consisting
0,050 of a set of ‘matches’, where each match corresponds
' - to a (putative) regulatory module in the sequence. The
Predictions positions in the sequence that are aligned with a motif

model are putative transcription factor binding sites, and
we refer to them as *hits’. We refer to the positions within

Fig. 1. The regulatory module search problem. The input consists the matches that are not aligned with motifs as ‘gaps’. We
acollection of motif models and a sequence database. The output '@a” the positions between matches ‘inter-cluster regions’
alist of predicted regulatory modules, with annotated binding sites )

and an associated confidence value for each module (Note that a match contains one or more hits, and need not
' contain hits to all of the motifs in the query.)
The goal of the alignment scoring function is to distin-

annotated regulatory modules, along with a measure cguish true regulatory modules from randomly occurring

confidence in each prediction. We will refer to this as theMatches. In light of what is known about regulatory mod-

‘database search task’. This computational problem is 4/€S: @ny such function must take into account the close-
simplified version of the problem solved in the cell by the Ness of the'agre_ement between the'motlf models af‘d.the
transcription machinery. In the cell, the sequence databa rresppndlng hits, the number of hits _and the proximity
consists of the entire genome, and the binding site modefd' the hits to each other. Thus, the design of the function
consist of the entire complement of transcription factor"ust address:
binding sites. _ e how to score the hits,

Our approach to the database search task is based on
a rove scoring function for the alignment of the motif e how to score (penalize) the gaps,
models in the query with a sequence, and an algorithm for
finding the alignment that optimizes the scoring function.®
The scoring function is an extension of thiasT (Bailey
and Gribskov, 1998) scoring function that combines the, how to combine the scores of matches and inter-cluster
scores of multiple, non-overlapping matches to the motifs  yegjons.
in the query. The alignment algorithm is similar to the
repeated match algorithm for aligning two sequence$elow, we describe how our scoring function addresses
(Durbin et al., 1998, p. 24-25). We implemented the €ach of the above issues, and compare it to the scoring
algorithm by introducing a new sequence model andunctions of existing methods.
search algorithm intiMetaMEME(Grundy et al., 1997), Our scoring function is the sum of scores for the hits,
which is part of the MEME family of tools (Bailey gaps and inter-cluster regions of an alignment. We define
and Elkan, 1994). The search algorithm includes a newd, the overall alignment score between a query (a set of
module for estimating th&-values of match scores. This motifs) and a sequence to be
search algorithm, calledcAsT (Motif Cluster Alignment c
Search Tool), can scan extremely long sequences in A— Z M: + cR.
limited memory. As a result of several optimizations, .
MCAST is efficient and can search a ten megabase
sequence database with a typical five-motif query in lessvhere ¢ is the number of matches (clusters) in the
than a minute on a 800MHz PC, scaling linearly to largeralignment,M; is the match score of theh cluster, and
databases or larger queries. R is a ‘match penalty’. The match score of ttth cluster

We describe the scoring function, sequence modelye define to be
search algorithm anB-value computation below. We then n
describe our methods for testing the algorithm on real M; = Z(hi +djg),

j:l

how to combine the scores of the hits and gaps within
amatch, and

i=1

and synthetic data, and describe two sets of experimental

results: simulations demonstrating the accuracy ofur

value calculation, and a comparison of the performance ovheren is the number of hits in the match,; is the
MCAST and a previously published method on four realscore of thejth hit in the matchd; is the length of the
data sets. We end with a discussion of our results andap between hif — 1 and hitj (di = 0), andg is a
related methods. ‘gap penalty’. To complete the description of the scoring
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function, we describe below how we calculate hit scoreswith positive p-scores as potential hits, so thecAST
and match and gap penalties. scoring method identifies essentially the same potential
We model a transcription factor binding site motif using hits ascis-ANALYST. In contrast, potential hits considered
aposition-specific probability matrix (PSPM), in common by COMET depend on the local composition surrounding
with two recent approaches to the database search probldime hit (via the changing background model) and on a user-
CIS-ANALYST (Bermanet al., 2002), anccomEeT (Frithet  specified mean-gap-length parameter,
al., 2002). A PSPM defines a hidden Markov model of In our scoring function, the total score for a gap is
motif sites with emission probabilities given by the entriesa linear function of its length. UnlikeCiS-ANALYST,
in the matrix, and transition probabilities of 1 betweenwhich ignores gaps up to a user-specified length, gaps are
adjacent columns from left to right. The probability of a penalized by our scoring function. Our linear gap cost
lengthw sequence given such a widtlh-motif model is is similar to the affine gap cost imposed by a Viterbi
the product of the probabilities of the letters, which arealignment to a hidden Markov model, but avoids the
given by the matrix. Like the other two search methodsjmplicit assumption that gaps within matches are best
our score for a hit is based on the log-odds score of thenodeled by a geometric length distribution.
subsequence in the target sequence, and the motif modelThe gap penaltyg, is calculated so that, with a random
For subsequence, the log-odds scores, isdefined as target sequence, random hits and their associated gaps will
have scores that essentially cancel one another. That is,
s=log, g is set so that the expected score of a random hit is
Pr (x|background modgl approximately equal to (minus) the expected total score

We use a fixed, user-specified, zero-order Markov back—Of a random gap. It can be shown (Bailey, 2003) that the

val f theo-score of a random n
ground sequence model, as da@s-ANALYST, andun- expected value of the-score of a random subsequence

like coMET, which uses a background model that variesscorecI with a single moif is

with the local sequence composition. (For a more com-

plete discussion of the differences betweeoAsT and

COMET, see the Discussion section.) The expected score of a gapgsimes the expected length
We define the hit score for the match between a motifof 3 random gapDg. For simplicity, we set

model and subsequengdo be

Pr (x]motif mode)

u~1/log2

-1
Pp(s) = —log, (—PI(OS)> . 9= Dglog2’

, i ) assuming that gaps have zero cost, so the resulting value of
wheres is the log-odds score (defined abovejis a user- g wjjl tend to over-penalize gaps slightly. To estimixg,
specified p-value threshold’, and(s) is the p-value of gt m pe twice the number of motifs in the query. (As we
log-odds score—the probability that a randomly chosen gha| see, below, the model will contaim2motifs since
sequence position would have log-odds score greater thaf introduce a ‘reverse complement’ motif for each motif
orequal tas. (In what follows, the variablg always refers i, the query to handle motif occurrences on the reverse

to the user-specifieg-value threshold.P(s) is estimated  complement DNA strand.) Wheg is zero, Dy can be
based on the motif model and the background sequencg,own to be approximately

model in the same way as for tiveasT algorithm (Bailey

and Gribskov, 1998) and further described in Bailey L
(2003). Clearly, the scor@y(-), which we refer to as a Do ~ Zipd(i),
‘ p-score’, increases monotonically $nso large values of i=0

the p-score correspond to large log-odds scores. Howeve
taking the p-value ofs has the effect of down-weighting
the log-odds scores of wider motifs because the log- p(L— p)
odds score corresponding to a givgravalue increases Pd(i) = —————,
with the width of the motif. Finally, dividing thep- 1-A-p
value of s by thresholdp means that only scores that are
more significant tharp will have positive p-scores. The
contribution of hit scores to the match score is proportional p=1—1-p™.

to the product of the hip-values. This has been shown

to be a highly effective method of combining evidenceThe above derivations assume that the motifs are indepen-
from multiple motif matches to sequences (Bailey anddent of each other and their reverse complements. When
Gribskov, 1998). Our algorithm only considers positionsthis is not true (for example, with motifs that are perfect

\rA/here pq(i) is the probability of a length+andom gap,

and p is the probability of a random hit,
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generated when a motif emits a subsequence ispthe
score of the subsequence, as described above. Note that,
although we speak of the model ‘generating’ sequences,
the model is not a traditional HMM, because we allow
the transition costs to be arbitrary, rather than constraining
them to be the logarithms of transition probabilities.

The other states in the model are either non-emitting
or free-emitting. The non-emitting states are simply a
topological shorthand. We could specify an equivalent but
more complex model that did not contain any such states.
The inter-module and intra-module states do emit letters
(one at a time) but do not accrue any score for doing so.
This arrangement is equivalent to setting the background
emission probability equal to the foreground probability in
these states. We thereby assume that the score of a match is
independent of the sequence composition of the non-motif
regions in and around the match.

. ) . The linear gap cost of intra-match gaps is controlled by
Fig. 2. The h|d_d_en Markov model._ Dotted lines corr_egpond 0 the single parametey. Entering the state marked ‘Intra’
zero-cost transitions, and dc_nt_ted circles are non-emitting State%ostsg 2 the cost of an intra-match gap of lengdhis
The valuesg and R are transitioncosts. Motif states emit fixed- ’ .

dg. In contrast, the inter-module state has a match cost

length strings, with costs computed usipgscores (see text for . . L . -
details). The 4 and " versions of each motif correspond to R associated with entering it, but no cost associated with

forward-strand and reverse-strand occurrences. The inter-modufXending it. ThUS’ this state is like the so-called ‘free-
intra-module states emit single characters with no associated codflSertion modules’ used in profile _HMMS (Krogtt f'vll-,
1994). The match cost must be paid after generating each

regulatory module, thereby guaranteeing that a match will
occur only if it scores better thaR.

palindromes), the value gfestimated above will be larger ~ The gap penaltyg and the match penaltiR together

than it should be. Experiments indicate that small changedetermine the maximum length of a gdp between

in g have little effect on the accuracy of the algorithm (data@djacent motifs in a regulatory module. The relationship

not shown.) is simple:L = R/g. Using this definition, any gap longer
The final component of our alignment scoring functionthan L will receive a score less thanR. The sequence

is the penalty for inter-cluster regions (the spaces betweefPuld therefore be generated with less cost by entering the

putative regulatory modules). We allow the user to Specwnter-module state. Thus, any candidate match containing

amaximum allowed gap widtH,. We then set the match & @P longer tharl. (or more generally, any subsequence

penalty R to be Lg. Note thatR is a penalty, and, like  Scoring less thar-R) will be splitin two.

g, is regative. The mter—clgster pena_llty isot length-  ThemcasT algorithm

dependent, thereby preventing the optimal alignment fromH ing d ibed th del th

containing gaps longer thah. As a side-effect, the 1aving described theMetaMEME model, the MCAST

. : . . . Igorithm is simple to describemCAST is simply the
timal al t will al t tches with agorit SImp'e 10 « . ply
l(égén;r?az_\:gnmen WSO contain no matehes wi SCOreVlterbl algorithm (Viterbi, 1967) applied to this slightly

non-conventional HMM, with the added constraint of
The model forbidding transitions into a motif with a negative-
. score. The algorithm builds a trellis, in which each row
The MetaMEME model_for _regulatory modules n DNA corresponds to a state in the model, and each column
sequences 1S shown in Figure QCAST automatically corresponds to a position in the sequence. The transitions
creates this model from the molifs in th_e query plus theoetween adjacent columns in the trellis are determined by
reverse complement of each DNA motif. In the model. o tonol0gy of the network. The algorithm finds a path
motif states emit multiple characters at once, and arg, . gh the model that scores highest with respect to the
therefore similar to a series of single-character stateaiven DNA sequence. The algorithm is provably optimal,
connected by transitions with 1.0 probabilities. The SCOrgnaximizing the scoring function described above. The

; ——— , , — Viterbi algorithm runs in timeO(En), where E is the
For queries with highly dependent motifeiCAST provides an additional " . .
parameterg, that can be used to make the valuegofarger. Details are number of transitions in the model amdis the Iength

given in Bailey (2003). of the DNA sequence. In our model, the number of
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transitions is proportional to the number of motifs, whichthe (estimated) number of random matches found in the
we assume is a small constant. Hence, the algorithm rursearch.
in linear time in the length of the DNA sequence.

For some readers, it may be helpful to note that performi\ETHODS

ing the \ﬁt_erbi algo_rithm with this model Is equivale_znt We testMCAST to evaluate the accuracy of its estimated
to performing a variant of the repeated match algor'thmE-values and its predictive accuracy. In this section we

(Durbinetal., 1998, p. .24_25) with a simpler model. !n the describe the data we use (motifs and sequence datasets),
repeated match algorithm, the repeat threshold R is SPeShd our measurement techniques. In all searches, we use

![felf’dssz;(':rigarletr%\r:g dn;%%ego%eenZil’dmgnf;?fxl)gskigleop?nlgnias theMCAST backgro_und model the base frequencies in
) . . . 'the DNA database being searched.
stored in the row corresponding to the ‘begin’ state. In this
formulation, the model has a simple star topology, with thegj | ated sequence databases and queries
‘intra’ state at the center of the star.
One drawback to the Viterbi algorithm is that its

memory requirement i©(mn), wherem is the number

For some tests of the accuracy mICAST E-values, we
create synthetic sequences containing simulated occur-

of states in the model. For a multi-motif model and " €NCes of regulatory modules. These are generated using a

a multi-megabase sequence, this memory requiremer’fﬂet&'\"E'VIE model I@ke the one in Figure 2. Th_e model is
quickly becomes unwieldy. Memory-efficient variants constructed from five human regulatory motifs, selected
of the Viterbi algorithm are available, but they trade &t random from TRANSFAC version 6.0 (Wingendsr

memory for speed. Our implementation performs theal.,ZO_OO). The regulting ”_“)de' (minus the"’.‘ter’ state) is
Viterbi algorithm in large, overlapping sliding windows. used in a generative fashion to produce motif occurrences

The window width and overlap sizes are set larger thaf't€rspersed with spacer regions. From a large pool of
the maximum length of a biologically plausible match. such sequences, a collection of 10 are selected that contain

between 9 and 20 motifs in the first 1000 base pairs (bp).
Calculating E-values This choice of number and spacing of motifs is based on

We calculate theE-values of match scores by assumingknown CRMs inDrosophila. These randomly generated,
that random match scores follow an exponential distribu1000 bp sequences are then padded on either end with
tion. We show empirically that this is true, below. It has 4500 bp of zero-order random background sequence. The
been reported that match scores using log-odds hit-scor&tire process, including motif selection, is repeated 100
and affine gap costs also follow an exponential distributiorimes, yielding 100 distinct sets of 10 positive examples.
(Frith et al., 2002). Each of these positive data sets is embedded in a database

MCAST estimates the parameters of the score distriof 2000 negative examples. Like the positive sequences,
bution empirically from the actual scores generated in dhe negative sequences are 10000 bp long. The negative
database search. To separate the random scores from tgRduences are generated from the same zero-order model
matches we use expectation maximization (EM) (Dempused to generate the non-motif portions of the positive
steret al., 1977). We assume a Gaussian distribution forsequences. For the tests Bfvalue accuracy, the queries
the true match scores, and EM simultaneously estimategnsist of subsets of the same TRANSFAC motifs as
the parameters of both components of the mixture of!Sed to generate the sequences. For each of the 100 sets
scores (exponential random scores and Gaussian tr@ synthetic sequences, four queries containing one, two,
match scores). The assumption of a Gaussian distributioi@ur or all five motifs are used.

for true match scores is made for convenience; an)ﬁ i
unimodal distribution would probably work as well. eal sequence databases and queries
We assume that random match scores are exponentiallour sets of co-acting regulatory motifs were col-
distributed with cumulative density function lected from previous studies. The first set contains five
Drosophila motifs (Bcd, Cad, Hb, Kr, Kni) that control
F(X)=1— exp( R- X) ) expression of theeven-skipped gene’s second stripe. For
2 testing using these motifs, we employ a negative database

of 2039 randomly selected intergenic regions from
Drosophila with average length 1981 bp. The positive
R — x database contains nineteddrosophila cis-regulatory
PX)=1-F(Xx) = exp(—) : (1) modules (CRMs) with average length 1283 bp. These
’ CRMs are taken from ninBrosophila genes known to be
We caert p-values toE-values (the expected number of required for embryonic development and to be regulated
random match scores greater th@nby multiplying by by at least one of the transcription factors Bcd, Cad, Hb,

The p-value of match score is therefore
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Kr and Kni. For further testing of the accuracy of esti- PSE measures how closely the estimapedalues match
matedE-values, we use a much larger database (92Mbdhe corresponding rang-values. The value of PSE is one
containing all intergenic regions fromrosophila. These minus the slope of the regression curve to the pojrts
sequence and motif databases were all taken from Berman(x;), pr (i) >}. PSE has the value zero if the estimated
et al. (2002). p-values are perfectly accurate. For qualitatively verifying

The remaining three motif sets are from human. Thethe accuracy of estimatep-values, we plot the rani-
first set (LSF) contains four motifs associated with LSF-value versus match score for all the random matches found
regulated promoters: LSF, Spl, Ets and the TATA boxin a search, along with a plot dP(x) (Equation (1)).
These were assembled from Frigh al. (2001) (LSF), The accuracy of the estimatg@values can be judged by
TRANSFAC accession no. M00196 (Spl) (Wingenderseeing how well the match score points agree with the
et al., 2000), from Frithet al. (2002) (Ets), and from P(x) curve.
Bucher (1990) (TATA). The second set (muscle) contains _ o
five motifs (Mef-2, Myf, SRF, Tef and Sp1) that occur Measuring predictive accuracy
in 27 experimentally supported muscle-specific regulatoryrhe output of themcAsT algorithm is a ranked list of
regions. The third set of motifs (muscle’) is a variant of predicted matches. To evaluate the performance of the
the second, in which the motif matrices are derived solelyalgorithm, this ranked list is compared to the set of
from non-muscle-specific genes. This latter set avoidgrue matches, and each predicted match is labeled as
some of the circularity involved in defining matrices a ‘positive’ or ‘negative’. Starting from the top of the
based upon motif occurrences that appear in the test sghnked list, we label as ‘positive’ each predicted match that
The muscle and muscle’ motif sets were assembled bygverlaps a true match. Whenever a positive is labeled, any
Wasserman and Fickett (1998). The positive LSF datasgéswer-ranked predicted matches that overlap the same true
contains nine human CRMs assembled by Fethal.  match are eliminated from the list. Predicted matches that
(2002). The positive muscle and muscle’ datasets contaigo not overlap any true match are labeled ‘negative’.
the 27 human CRMs assembled by Wasserman and FickettGiven the ranked list of positive and negative predicted
(1998). For the three human data sets (LSF, muscle andlatches, we measure the search algorithm’s performance
muscle’), the negative dataset is a collection of 200%sing a variant of the receiver operating characteristic
randomly-chosen, 2000-bp human genomic sequences, g30C) score (Gribskov and Robinson, 1996; Schadfer
selected by Frittet al. (2002). al., 2001). The ROC curve plots the true positive rate as

All of the real datasets were processed to mask tande@function of false positive rate, for varying classification
repeats using Tandem Repeats Finder (Benson, 199%hresholds in the ranked list of predicted matches. The
Low complexity regions were then masked witusT ~ ROGs, score is the area under this curve, up to the fiftieth
(R. Tatusov and D. Lipman, manuscript in preparation)false positive match, normalized so that the score falls
The parameters used with Tandem Repeats Finder argetween 0 and 1. An RG of 1 corresponds to perfect
(2 77 80 10 50 500 -m). WitibusT we use the default performance (all positives ranked above all negatives). On
parameters. this task, random performance corresponds to an §30C

. close to 0.

Evaluating the accuracy of E-values. For consistency with Fritlet al. (2002), we also measure
BecauseE-values are justp-values multiplied by the the average number of (kilo) base-pairs per false positive
number of random matches found in the searh, at a threshold that yields approximately 60% sensitivity
value accuracy ang-value accuracy are equivalent. For (FPso). However, we believe that RGg is a more
simplicity, we consider the accuracy @EAST p-values.  revealing measure of predictive accuracy thagoRFhen

No matter what the form of the match score diStribUtion,Comparing search methods, because Rpﬁkes into
the expectedp-value of theith largest random score in @ account the complete ordering, rather than focusing on a
search yieldingn matches is single point along the ROC curve.

or (i) = % RESULTS
n+ In this section we show that tHe-values for match scores

We will refer to pr (i) as the ‘rankp-value’ of the {th  computed bymMCAST are accurate and show how to use
largest) score. them to select the best settings of the search parameters

The accuracy ofp-values estimated byicAST can be  p andg. We then show the predictive accuracy possible
evaluated by comparison with the corresponding rark whenMCAST is used to search for cis-regulatory modules
values. For a quantitative evaluation, we use thevalue in Drosophila and human sequences, and compare with
slope error’ (PSE) (Bailey and Gribskov, 2002) metric.results using an earlier method. Finally, we examine
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Table 1. Accuracy of estimateé-values: real motifs, synthetic sequences 1
auery P 0.1
size 0.00001 0.00005 0.0001 0.0005 0.001 :

s
1 - 0.100 0.066 0.022 0.021 S
2 - 0.057 0.039 0.011 0008 & 0.01
4 0.068 0.034 0.026 0.006 0.005 %
5 0.067 0.030 0.015 0.005 0.003 =

0.001

The average PSE (see Methods) for searches of synthetic sequences using
various numbers of real human transcription factor binding site motifs in
the query is shown. Each value of PSE is the mean of 100 independent 0.0001 . . . . -
experiments. Results are shown for distinct valuep.ofhe parameteg is 0 5 10 15 20 25 30

200 in all searches. A dash (‘=) indicates that the minimum number of
matches folE-value estimation (200) are not found in any experiment.

match score

Fig. 3. E-value accuracy: real sequences, shuffled motifs. The plot
shows threemcAsT searches using the four shuffled LSF motifs
and the human intergenic database. TfeasT search parameters
areL = 200 and the indicated values @t Each set of points

Accuracy of E-values ) .
y corresponds to on®ICAST search. Each curve is the exponential

Wetest the accuracy of the-value reported bMCASTIN  score distribution estimated bycAsT (using EM) for that search.
two ways. First, we search synthetic sequences (some of

which contain synthetic cis-regulatory modules) with sets

of real transcription factor motifs. Second, we search realjentical to the estimateg-values (they values of the
sequences with shuffled versions of motifs. _ estimated exponential distribution curves). Thealues

In experiments using actual TRANSFAC motifs and continue to be accurate even for settingspoéis low as
synthetic sequences containing occurrences of those mg:0pp0o5 (data not shown for clarity). Some high-scoring
tifs, MCAST accurately estimates tHe-values of random  ,tliers are seen for larger settings mfso the accuracy

matches. (See Methods section: Simulated sequenggcasT E-values may suffer with settings @f> 0.001
databases and queries.) The average PSE under these c@fsome searches.

ditions is shown in Table 1. Similar results are obtained

with different settings ofj between 35 and 1000 (data not Predictive accuracy

shown). By way of comparison, PSE for Smith-Waterman,. measure the predictive accuracy mEAST using
alignment scores of protein sequences using the be e Drosophila motif set from Bermaret al. (2002) and
empirical estimation methods is around 0.03 (Bailey anc?she three human motif sets from Frigt al. (2002), as

Gribskov, 2002). These experime_nts_shc_Jw that both thﬁescribed in the Methods section. For comparison, we
form of the random match score distribution and our EMaIso measure the accuracy ©OMET on the same data.

algorithm to estimate the distribution from the empirical For each search method, we try several parameter settings
;ccr)resr(\j/vorr'l;l V\;E”VWhen trr:e random matches come fron?;md report the optimum value of each accuracy measure.
eTcOJ-?esf ths agcj;?:ueo}?et.h E-values estimated b This optimization is done separately for each method and
acy Y each accuracy measure. Five distinct settingp aind
MCAST when searching real DNA, we shuffle the motifs ten settings ofl are used withvcasT (fifty parameter

in each of the four real motif set<D(osophila, LSF, combinations). Nine distinct settings of expected ga
muscle, muscle’). Shuffling is accomplished by randomly, y 9 P 9ap

; L ; .. Jlength,a, and six window sizesyw, are used witltCOMET
permuting the entries in each column (motif pOSItlon)(fift -four parameter combinations). All other parameters
in the motif. We use the shuffleBrosophila motifs to Y P ' P

seatch the large (32MiDrosophila sequence database. &% B0 & VR SRS RS TR B L DIER
We search our human genomic database using shuffle%b P 9 '
verS|on§ of each of the other three motif sets. BecausB\/alues ofMCAST andCOMET parameters used in experiments:

the motifs are shuffled, we expect all match scores to be

the speed of thencAsT algorithm for searching large
genomic databases.

essentially random. Typical results are shown in Figure 3. wcast { "L’i%gf%%oéé)'(l)ggoﬂ_)gg%%ls%gofgqos%%%g&d
The accuracy ofMCAST p-values depends somewhat we (75,150,300 600, 1200 2400 and
on p, the p-value threshold. For settings qf below COMET{ae{s, 10, 15, 25, 35, 50, 100, 125 150}.

0.001, the rankp-values § values of points) are virtually
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Table 2. Predictive accuracy for two search methods 0.8
motif set FPso ROGsq
MCAST COMET MCAST COMET
Drosophila >4041 1010 0.68 0.61 3
LSF 167 85 0.44 0.35 o'
muscle 30 69 0.38 0.46 8
muscle’ 14 6 0.16 0.25
Performance is given in terms of gg? number of thousands of base-pairs
per false positive at a threshold yielding approximately 60% sensitivity,
and, ROG: receiver operating characteristic integrated up to the fiftieth 0 ‘ ‘ ‘ ‘ ‘ ‘
false positive. Rerformance flguresh_(_)ld are the be_tt_er of the two. For 0 100 200 300 400 500 600 700
FPs0, the sensitivity levels (true positives/total positives) are: 11/19
(Drosophila), 5/9 (LSF) and 16/27 (muscle, muscle’). L (MCAST) / a (COMET)

The predictive accuracy of the two search methods i§ig. 4 ROGs as a function of the search parameters. The
shown in Table 2. The relative performance of the method®rosophila dataset is searched using tbeosophila motifs. The
depends on the accuracy metric used. In terms @,FP first four curves are fomCAST searches and show how RgyC
MCAST performs better in three cases and worse in ong’2res as a function of the maximum gap lengt) @with the p-

value threshold §) held constant at different values. The last two
Imn()tgfr?;smaﬁgﬁgézcohn TﬁéhOd performs better on two curves show ROgy as a function o£OMET's expected gap length

. . . . parameter &) using the default window sizeu( = 75) and the
The most striking result in Table 2 is with the experimentally-determined optimal size & 1200).

Drosophila motifs. MCAST makes at least four times
fewer false positive predictions thanoMET at a sen-

sitivity of 60%. With that motif set as well as with the
LSF motif set,MCAST achieves higher ROfg values
than coMET. On the other hand,COMET has better
ROG5p than MCAST with the muscle and muscle’ moti

default window size. This points out the importance of
trying different window sizes when usir@pMET.

On theDrosophila data,cOMET achieves its best value
f of FPsp (Table 2) and ROgp (Fig. 4) when its window

sets, despite having poorer &Pon one of them. This size parametety, isset to 1200. The average length of the

discrepancy highlights the difference in the two accuraC)PmSOph'Ia dataset sequen,ces IS a'bout 2000Dbp. .Th's. leads
measures. Whereas §gputs emphasis on the selectivity us to speculate th.aIO.ME.TS tec_hr_nque O.f re-estimating
at a given sensitivity (60%), ROfg takes both selectivity the baclgglroltlnqtdlstélbutgn within a §I|d|ng window is
and sensitivity into account, ignoring performance beyonc{ﬁs%ons' ﬁ.l 0:1' f re tuce accuracy (vis-aMsasT) on
the fiftieth false positive. ebrosophila dataset.

The predictive accuracies ofCAST and COMET vary
greatly as a function of their parameters. Figure 4 is typica| . . .
of how ROG; varies with the settings of the two search We have optimized the design 0iCAST for searching

parameters. Each point in the figure shows the accuraégrge sequence databases. For databases containing more
of a MCAST or COMET search with theDrosophila data an one hundred thousand base pairs, search time scales

Curves labeledh = 0.001 etc. show RO& for MCAST nearly linearly in the size of the database and the total

searches with the givep and values oL shown on the number of columns in the motifs making up the query.
x-axis. The two curves labeled — 75 andw — 1200. For example, on an 800Mhz Pentium PC running Linux,

respectively, show RO for COMET searches on the MCAST can search about 10 million base-pairs per motif

Drosophila data using the given window sizes and variousColumn per second. Thus, a search of 10 million base

values of the expected gap length parameteshown on ~ P&irs with five motif query (containing a tqtal of 49 motlf
columns) takes about 49 seconds. This is approximately

the x-axis. . . .
The discrepancy in predictive accuracy betwsemsT ;LOO times faster than the same search usiogET using
its default parameters.

and COMET is much larger (inMCAST's fawor) when
only the default value ofOMET's window size parameter
(w = 75) is used. In that case, with the best settinngSCUSS|ON

for the othercoMET parameter (expected gap lengé), = We first introduced the idea of using motif-based hid-
COMET's FPsp value on theDrosophila dataset is 59, den Markov models to model biological sequences as the
sixty-eight times worse thamcAsT’s. As can be seen in  MetaMEME algorithm (Grundyet al., 1997). In the current
Figure 4,coMETs ROGsg is also much worse with the work, we explore extensions taetaMEME specifically
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tailored to the problem of searching for regulatory mod- Our work falls into the second class of algorithms,
ules. These extensions include a new model, a novelhich use hidden Markov models (HMMs) to address
scoring function, a new search algorithm optimized forseveral of these difficulties (Crowlest al., 1997; Frith
finding multiple clusters of motifs in long sequences, andet al., 2001, 2002). HMMs automatically disallow over-
a method for determining alignmeri-values. We have lapping motifs, and the HMM framework makes it easy
shown that the new search algorithmGAsT, is dficient  to specify parameters that trade off the quality versus
and accurate at recognizing occurrences of regulatorproximity of motif occurrences. An additional benefit of
modules in genomic DNA. In simulation, the algorithm HMMs is their ability to learn parameters directly from a
produces accuratE-values. With real datasetsjcast  Set of observations, freeing the user from having to set the
often performs substantially better on the task of locatingParametersa priori. Unfortunately, the relative paucity
regulatory modules than theomeT algorithm, which ~of knowledge and data concerning the exact locations
also uses motif-based HMMs. of many binding sites renders such a learning approach
There are three major differences between Mt ST infeasible at this time. Consequently, preViOUS mOdeIS, as
andcoMET algorithms McAsT introduces the concept of Well s our own, require that the user specify the trade-off
p-scores, anmcAST alignments thus contain only statis- Parameters, rather than allowing the parameters to be
tically significant hits to the motifs in the quempcast  learned from data (Fritht al., 2001, 2002). o
uses a fixed background model in contrastctoMET's Although the HMM approach has several benefits, it
sliding-window background. This results MCAST being also brings with it two significant dlgadvantqges. Both are
about one hundred times faster thaaMeT when using  '€lated to the Markov property. First, within the HMM
its default (width 75) window. Unfortunately, it also re- framework, it is very d|ff!cglt to impose distal constraints.
sults inMCAST being more prone to false positives (with ] huS: for example, a sliding window approach has some

very low E-values) in vertebrate sequences due to isolntuitive appeal, because the regulatory machinery must

chores. A more subtle distinction between the two algoYSually be physically proximal to the start of transcrip-

rithms is thatMCAST uses the repeated match algorithm 0" However, enforcing the constraint that a predicted
(Durbin et al., 1998, p. 24-25) rather than the Waterman_regulatory module have a total length of at mo&tases is

Eggert algorithm (Waterman and Eggert, 1987). In the fu_(nearly) impossible in a Markov framework. The second

ture, we may add a Waterman-Eggert search algorithm tgrawback IS rel‘f"ted to the first: Markov Processes in
theMeta-MEME toolkit. In conjunction with log-odds scor- general have a difficult time accurately modeling variable-

ing (the default foMetaMEME) and a module for comput- length sequences. A simple state with a self-transition
ing Waterman-Eggenp-values (awaiting publication lgf a will generate sequences whose lengths are geometrically
detailed description of the method sketched in Feithl. distributed. Multi-state models can yield more complex

. . . . length distributions, but the geometric distribution re-
Erzn?r?ﬁgttr?elzss\ll;/gi?]Igd-\yvierzlgoe\i\?zea?:izlrlgJ:?n'\:z;l)gomhm curs frequently. This latter problem motivates one of

the ways in which our model violates the probabilistic
Other related work HMM framework: we avoid a geometric distribution of

i . inter-module sequence lengths by removing the length
Three classes of algorithms for recognizing regulatoryyistribution in this portion of the model.

modules have been proposed. Algorithms in the first class ggth the sliding window and the HMM approaches to
use a sliding window approach, scoring each subsequengge regulatory module search problem are generative: both
that appears in the window with respect to a givenrely upon a model (implicit or explicit) of a regulatory
collection of motifs. Examples include PromoterScanmodule. The third class of algorithms uses a discriminative
(Prestridge, 1995), FunSiteP (Kondrakkenal., 1995),  technique. These methods model the difference between
Modelinspector (Frechet al., 1997), CIS-ANALYST  the regulatory module and non-regulatory sequence. Lo-
(Bermanet al., 2002),FLY ENHANCER (Marksteinet al.,  gistic regression analysis (LRA) (Wasserman and Fickett,
2002), and several other methods (Levy and Hannenhall,998: Krivan and Wasserman, 2001) is a discriminative
2002). Typically, a window-based algorithm requires thatiechnique based upon a sliding window. The Fisher kernel
the user specify three parameters: the width of the sliding\yM method (Pavlidist al., 2001) uses a discriminative
window, a threshold for determining when a weak matchalgorithm based upon a hidden Markov model. In the pres-
to a given motif is considered genuine, and the minimunmence of a small amount of data, discriminative techniques
number of motif occurrences required to appear in a givemypically achieve better performance than similar, gener-
subsequence. The sliding window approach has intuitivative techniques. However, the discriminative approach
appeal, and has recently yielded good results in analysescessarily requires as input a collection of sequences
of motif clusters inDrosophila (Bermanet al., 2002; that are known not to contain regulatory modules, and an
Marksteinet al., 2002). accurate such collection is at this time difficult to obtain.
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Futurework scoring matrices in nucleotide sequenciscleic Acids Res,,

. . - 30(14), 3214-3224.
Searching for regulatory modules remains a dIﬁICUIt’Gribskov,M. and Robinson,N.L. (1996) The use of receiver operat-

unsolved prObIe_m' AS pomtec_i out by Friéhal. (2002), ing characteristic (ROC) analysis to evaluate sequence matching.
many known, biologically active regulatory modules are  comp. & Chem,, 20, 25-33.

not statistically significant when modeled as unorderedsrundy,W.N., Bailey, T.L., Elkan,C.P. and Baker,M.E. (1997) Meta-
clusters of motifs. One potential solution is to seek ways to MEME: Motif-based hidden Markov models of protein families.
focus the search onto a smaller subset of the genome, thusComp. Appl. Biosci., 13(4), 397-406.

increasing the significance of any clusters found. A secontflingenhoff,A., Frech,K., Quandt,K. and Werner,T. (1999) Func-
solution might be to post-process the clusters to remove tional promoter modules can be detected t?y forma! models inde-
clusters that don't satisfy some set of constraints (e.g., that Pendent of overall nucleotide sequence similaipinformat-

. o . ics, 15, 180-186.
don’t contain some specific subset of motifs). Yet anothekon;akhin YV KelAE. Kolchanov.NA. Romashchenko A.G

approac;h is. to attempt to intro_duce ordering and spacing and Milanesi,L. (1995) Eukaryotic promoter recognition by
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